Unravelling enzymatic hydrogen production mechanisms with ultrafast 2D-IR spectroscopy
利用超快二维红外光谱揭示酶促产氢机制
基本信息
- 批准号:2107430
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The hydrogenases are families of metalloenzymes that efficiently catalyse the reversible cleavage of H2 into protons and electrons and so offer ideal prototype catalysts for sustainable energy generation involving H2. Before we can develop technological materials based upon the hydrogenases however, a detailed understanding of the mechanism of H2 production and usage is required. This multidisciplinary project will combine ultrafast 2D-IR spectroscopy (Hunt) with electrochemical and biochemical methods (Parkin) to understand structural changes and the role of dynamic processes in the action of these important enzymes. 2D-IR is a new ultrafast laser spectroscopy method that spreads the IR spectrum of a molecule over a second frequency axis [1]. This multidimensionality allows access to a wealth of new spectral information but the most powerful aspect of 2D-IR is the ability to determine molecular structure and changes in that structure with a time resolution of 100 fs (10-13 s). This opens up the possibility of observing reaction steps, solvent motion or H-bond vibrations that are central to the hydrogenase mechanism in real time. This is highly complementary to the insight into ultrafast electron movement in hydrogenases which can has been obtained in the Parkin group using Fourier transform large amplitude alternating current voltammetry [2]. Although synthetic models of the hydrogenases have been studied with 2D-IR [3,4], this collaboration offers the unique opportunity to compare these results with the full enzyme systems for the first time. By studying a range of site mutations and using electrochemical methods to prepare catalytic intermediates we will use 2D-IR to understand the way in which the protein scaffold interacts with the active site to influence or control the enzyme mechanism. This is a particularly important issue since biomimetic model compounds lacking the protein scaffold show very low catalytic efficiency, emphasising its importance [4], but the precise molecular function that it plays in the enzyme cycle is unknown.(1) Hunt, N. T. Chem Soc Rev 2009, 38, 1837.(2) Adamson, H.; Robinson, M.; Wright, J. J.; Flanagan, L. A.; Walton, J.; Elton, D.; Gavaghan, D. J.; Bond, A. M.; Roessler, M. M.; Parkin, A. Journal of the American Chemical Society 2017, 139, 10677.(3) Fritzsch, R.; Brady, O.; Adair, E.; Wright, J. A.; Pickett, C. J.; Hunt, N. T. Journal of Physical Chemistry Letters 2016, 7, 2838.(4) Frederix, P. W. J. M.; Adamczyk, K.; Wright, J. A.; Tuttle, T.; Ulijn, R. V.; Pickett, C. J.; Hunt, N. T. Organometallics 2014, 33, 5888.
氢化酶是金属酶的家族,其有效地催化H2可逆裂解成质子和电子,因此为涉及H2的可持续能源产生提供理想的原型催化剂。然而,在我们开发基于氢化酶的技术材料之前,需要详细了解H2生产和使用的机制。这个多学科项目将联合收割机超快2D-IR光谱(亨特)与电化学和生物化学方法(帕金)相结合,以了解结构变化和动态过程在这些重要酶的作用。2D-IR是一种新的超快激光光谱学方法,其将分子的IR光谱扩展到第二频率轴上[1]。这种多维性允许访问丰富的新光谱信息,但2D-IR最强大的方面是能够以100 fs(10-13 s)的时间分辨率确定分子结构和该结构的变化。这开辟了观察反应步骤,溶剂运动或氢键振动的可能性,在真实的时间是氢化酶机制的核心。这是对氢化酶中超快电子运动的深入了解的高度补充,这可以在Parkin组中使用傅立叶变换大幅度交流伏安法[2]获得。虽然氢化酶的合成模型已经用2D-IR [3,4]进行了研究,但这项合作首次提供了将这些结果与完整酶系统进行比较的独特机会。通过研究一系列位点突变和使用电化学方法制备催化中间体,我们将使用2D-IR来了解蛋白质支架与活性位点相互作用以影响或控制酶机制的方式。这是一个特别重要的问题,因为缺乏蛋白质支架的仿生模型化合物显示出非常低的催化效率,强调了其重要性[4],但它在酶循环中发挥的精确分子功能是未知的。(1)Hunt,N. T. Chem Soc Rev 2009,38,1837。(2)Adamson,H.;罗宾逊; Wright,J. J.;弗拉纳根湖一、Walton,J.; Elton,D.; Gavaghan,D. J.道:邦德,A. M.; Roessler,M. M.;帕金,A。Journal of the American Chemical Society 2017,139,10677. (3)Fritzsch,R.;布雷迪,O.; Adair,E.; Wright,J. A.;皮克特角J.道:Hunt,N. T. Journal of Physical Chemistry Letters 2016,7,2838. (4)Frederix,P. W. J. M.; Adamczyk,K.; Wright,J. A.; Tuttle,T.;乌利因河五、皮克特角J.道:Hunt,N. T.有机金属2014,33,5888。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Active-site models unravel mechanism of enzymatic alkane activation
活性位点模型揭示了酶促烷烃活化的机制
- 批准号:
10711929 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
- 批准号:
10550521 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of enzymatic tools for rapid measurement of Advanced Glycation End Product-protein adducts
开发用于快速测量高级糖基化终产物-蛋白质加合物的酶工具
- 批准号:
10757215 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular Architecture of Oxidative Stress Induced Double Strand Break Repair
氧化应激诱导双链断裂修复的分子结构
- 批准号:
10755883 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10708796 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the Enzymatic Mechanism of Superoxide Dismutase
破译超氧化物歧化酶的酶促机制
- 批准号:
10663311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the Enzymatic Mechanism of Superoxide Dismutase
破译超氧化物歧化酶的酶促机制
- 批准号:
10418479 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Interrogating the Structural Basis of Nuclear Receptor Activation on Chromatin
探究染色质核受体激活的结构基础
- 批准号:
10538474 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Identification, characterization, and application of bacterial site-specific vanadium-dependent haloperoxidase enzymes
细菌位点特异性钒依赖性卤过氧化物酶的鉴定、表征和应用
- 批准号:
10663337 - 财政年份:2022
- 资助金额:
-- - 项目类别: