Development of an optimised event reconstruction for the Deep Underground Neutrino Experiment using machine learning and a multi-algorithm approach
使用机器学习和多算法方法开发深层地下中微子实验的优化事件重建
基本信息
- 批准号:2108560
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mousam will develop pattern-recognition algorithms in the Pandora framework[1], to reconstruct neutrino-induced events in the liquid-argon time-projection chambers (LArTPCs) to be deployed by the Deep Underground Neutrino Experiment (DUNE)[2]. DUNE is designed to help answer arguably the most important outstanding question of fundamental physics: "What is the origin of the matter-antimatter asymmetry in our Universe?". It will also provide precision measurements of the parameters governing neutrino oscillations and it has the potential to record a burst of neutrinos from a core-collapse supernova, providing a wealth of new information.LArTPC pattern recognition is one of the most challenging problems in modern high energy physics and is a critical contribution to DUNE. LArTPCs provide "photograph quality" images of the charged particles produced in neutrino interactions. The images can be extremely complex, with a mix of overlapping track-like and shower-like topologies. Whilst the human brain can usually pick out the key features, it is a significant challenge to develop an automated, algorithmic solution. The pattern recognition is the single step in the DUNE workflow in which LArTPC images are examined in detail, so it is vital that information in the images is fully extracted.The Pandora project champions a "multi-algorithm" approach to analysing LArTPC images, in which individual algorithms each look for specific features in event topologies. Many tens of algorithms carefully build up a picture of events and collectively provide a robust reconstruction. Pandora currently offers the most advanced and best documented LArTPC reconstruction and it is used extensively by the international neutrino physics community. Mousam will be working to develop novel pattern-recognition algorithms to identify features in events at DUNE.In the first instance, Mousam will focus on understanding the current performance of the Pandora pattern recognition for DUNE events, identifying any weaknesses and designing algorithms to address any issues with specific topologies. Mousam will increasingly focus on the use of machine-learning approaches to drive the decisions made by pattern-recognition algorithms. He will develop algorithms that use machine-learning to classify individual hits in DUNE events as originating from track-like or shower-like particles. He will work to identify the positions of neutrino interaction vertices in DUNE events and perform the first studies to identify the vertices of secondary, downstream interactions. He will ensure the information extracted from machine-learning approaches is exploited effectively to drive a more performant pattern recognition.Mousam will ultimately develop a physics analysis, using detailed knowledge of the pattern-recognition outputs to optimise selection of events and assess the sensitivity of DUNE to the parameters governing neutrino oscillations and/or CP violation in the neutrino sector.[1] Eur. Phys. J. C (2018) 78: 82[2] arXiv:1512.06148 [physics.ins-det]
Mousam将在Pandora框架中开发模式识别算法[1],以重建将由深层地下中微子实验(DUNE)部署的液氩时间投影室(LArTPC)中的中微子诱导事件[2]。DUNE旨在帮助回答基础物理学中最重要的悬而未决的问题:“我们宇宙中物质-反物质不对称的起源是什么?”".它还将提供精确的测量参数的中微子振荡,它有可能记录一个核心崩溃的超新星的中微子爆发,提供了丰富的新信息。LArTPC模式识别是现代高能物理中最具挑战性的问题之一,是一个关键的贡献DUNE。LArTPC提供了中微子相互作用中产生的带电粒子的“照片质量”图像。这些图像可能非常复杂,混合了重叠的轨道状拓扑和重叠的拓扑。虽然人类大脑通常可以挑选出关键特征,但开发自动化算法解决方案是一个重大挑战。模式识别是DUNE工作流程中的一个步骤,在DUNE工作流程中,LArTPC图像被详细检查,因此图像中的信息被完全提取是至关重要的。Pandora项目支持一种“多算法”方法来分析LArTPC图像,其中每个算法都在事件拓扑中寻找特定的特征。数十种算法仔细构建事件的图像,并共同提供强大的重建。潘多拉目前提供最先进和最好的记录LArTPC重建,它被国际中微子物理界广泛使用。Mousam将致力于开发新的模式识别算法,以识别DUNE事件中的特征。首先,Mousam将专注于了解DUNE事件的Pandora模式识别的当前性能,识别任何弱点并设计算法来解决特定拓扑结构的任何问题。Mousam将越来越多地专注于使用机器学习方法来驱动模式识别算法做出的决策。他将开发使用机器学习的算法,将DUNE事件中的单个命中分类为源自轨道状或类轨道状粒子。他将致力于确定DUNE事件中中微子相互作用顶点的位置,并进行第一次研究以确定次级下游相互作用的顶点。他将确保从机器学习方法中提取的信息被有效地利用,以推动更高效的模式识别。Mousam最终将开发一个物理分析,利用模式识别输出的详细知识来优化事件的选择,并评估DUNE对中微子振荡和/或中微子部门CP破坏参数的敏感性。[1]EUR. Phys. J. C(2018)78:82[2] arXiv:1512.06148 [physics.ins-det]
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
- DOI:10.1088/1748-0221/15/12/p12004
- 发表时间:2020-12-01
- 期刊:
- 影响因子:1.3
- 作者:Abi, B.;Abud, A. Abed;Zwaska, R.
- 通讯作者:Zwaska, R.
Volume I. Introduction to DUNE
- DOI:10.1088/1748-0221/15/08/t08008
- 发表时间:2020-08-01
- 期刊:
- 影响因子:1.3
- 作者:Abi, B.;Acciarri, R.;Zwaska, R.
- 通讯作者:Zwaska, R.
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
- DOI:10.1103/physrevd.102.092003
- 发表时间:2020-11-09
- 期刊:
- 影响因子:5
- 作者:Abi, B.;Acciarri, R.;Zwaska, R.
- 通讯作者:Zwaska, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Quantum optimised train schedules
量子优化的列车时刻表
- 批准号:
10107895 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Small Business Research Initiative
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Digital Tools for Sustainable Water Resources Management: Integrating impact of change of climate, land use, and optimised solutions
可持续水资源管理的数字工具:整合气候变化、土地利用和优化解决方案的影响
- 批准号:
EP/Y037057/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
AI-Optimised Fermentation for Sustainable Protein Production from Food Side Streams
人工智能优化发酵,从食品副产品中可持续生产蛋白质
- 批准号:
BB/Y513933/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
codABLE: Data-driven optimised protein production using Pichia pastoris
codABLE:使用毕赤酵母进行数据驱动的优化蛋白质生产
- 批准号:
10108143 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
Development of novel Penicillium strains optimised for mould-ripened plant-based cheese manufacturing
开发针对霉菌成熟植物奶酪生产优化的新型青霉菌菌株
- 批准号:
10061661 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Rapid Creation of Optimised Train Timetables Rail Demonstrations
快速创建优化的列车时刻表 铁路演示
- 批准号:
10089519 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Optimised machining strategies for near net shape components
近净形部件的优化加工策略
- 批准号:
2902143 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
SOCA - Sustainably Optimised Composite Automotive
SOCA - 可持续优化的复合材料汽车
- 批准号:
10081882 - 财政年份:2023
- 资助金额:
-- - 项目类别:
BEIS-Funded Programmes