Spatial organisation and mechanical control of gene expression on the bacterial chromosome

细菌染色体上基因表达的空间组织和机械控制

基本信息

  • 批准号:
    2111131
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

A crucial condition for life at any level of organisation is the ability to both perceive and correctly respond to a dynamic environment. At the cellular level, complex signalling mechanisms that sense this environment lead ultimately to the regulation of gene expression in the chromosome. The bacterial chromosome is linearly compacted by a factor of approximately 1000 to fit within a region called the nucleoid, supporting gene regulation and correct DNA segregation. Understanding the mechanisms of gene regulation requires the study of the link between chromosome organization and function an open question made challenging by the dynamic nature of the nucleoid.A common assumption is that the sensing and regulation machinery operates on a purely chemical basis. However, evidence is emerging across both eukaryotes and prokaryotes to suggest that chemistry alone is insufficient to fully explain gene regulation hinting at coupling between biochemical and mechanical processes. Building upon existing knowledge and expertise in bacterial systems, the impact and objective of our work will be further study of transcription regulation and organisation, and the role of mechanical forces on it. This work represents a novel collaboration between two Biological Physics research groups in the Department of Physics at the University of Oxford: The Single Molecule "Gene Machines" Group led by Prof. Achillefs Kapanidis, who have extensive expertise in both bacterial transcription and single-molecule super-resolution imaging, both in-vivo and in-vitro.The Nanoscience for Medicine Group, led by Prof. Sonia Contera, who offer expertise in cell mechanics, and nanoscale mechanical characterisation and manipulation of materials. Chromosomal organization in normal conditionsIn this work, we will develop a novel genetic manipulation system based on mutated CRISPR dCas9, working closely with Dr. Hafez El Sayyed from the "Gene Machines" group - this could be used for both fluorescent tagging and biochemical interrogation. The novel system will enable simultaneous multi-colour fluorescent imaging of genetic loci, and will be used with single-molecule super-resolution microscopy to investigate the structure of the chromosome in 3D space. Specifically we will investigate the relative proximity of operons in wild-type species, and of the remaining number of operons in mutant strains; the potential organisation levels of the nucleoid. Another level of organization may be provided by the phenomenon of liquid-liquid phase separation, which has recently been implicated in the formation of membrane-less organelles, most interestingly the eukaryotic nucleolus. Naturally, this raises the possibility of the existence of similar mechanism in the bacterial nucleoid - subject to time constraints; this could also investigated using multi-colour fluorescence imaging. Chromosomal organization under antibiotic-induced stress Imaging chromosomal organization as per Aim 1 also offers the prospect of integrating the work with an ongoing, industry-relevant project on rapid detection of antimicrobial resistance at the single cell level. Here, we will establish antibiotic resistance phenotypes based on changes to nucleoid structure in response to antimicrobial agents, and complement that with species identification from targeted probes - both at the single cell level. Combining that with wide field microscopy offers the prospect of establishing a clinical assay. We will provide proof-of -concept results, working firstly with homogenous samples and moving towards heterogeneous clinical isolates. Collaboration on this initiative is already in place between the Gene Machines group, and the John Radcliffe Hospital in Oxford. Aim 3 The role of mechanical forces in chromosomal organization and regulation Mechanical forces can affect gene regulation in at least two distinct ways. The first is by triggering of mechano-sensitive biochemical pathways a known t
在任何组织层次上,生命的一个关键条件是感知和正确应对动态环境的能力。在细胞水平上,感知这种环境的复杂信号机制最终导致染色体中基因表达的调节。细菌染色体线性压缩约1000倍,以适应称为类核的区域,支持基因调控和正确的DNA分离。了解基因调控的机制需要研究染色体组织和功能之间的联系,这是一个开放的问题,具有挑战性的动态性质的核。一个共同的假设是,传感和调控机制的运作是在纯粹的化学基础上。然而,在真核生物和原核生物中出现的证据表明,单独的化学不足以完全解释暗示生物化学和机械过程之间耦合的基因调控。基于细菌系统的现有知识和专业知识,我们工作的影响和目标将是进一步研究转录调控和组织,以及机械力在其中的作用。这项工作代表了牛津大学物理系两个生物物理研究小组之间的新合作:单分子“基因机器”小组由Alfrefs Kapananovich教授领导,他在体内和体外细菌转录和单分子超分辨率成像方面拥有丰富的专业知识。他们提供细胞力学、纳米级机械特性和材料操作方面的专业知识。 在这项工作中,我们将开发一种基于突变CRISPR dCas 9的新型遗传操作系统,与来自“基因机器”小组的Hafez El Sayyed博士密切合作-这可以用于荧光标记和生化询问。该新系统将能够同时对遗传基因座进行多色荧光成像,并将与单分子超分辨率显微镜一起用于研究染色体在3D空间中的结构。具体而言,我们将调查野生型物种中操纵子的相对接近度,以及突变株中剩余的操纵子数量;类核的潜在组织水平。另一个层次的组织可能是由液-液相分离的现象提供的,这一现象最近被认为与无膜细胞器的形成有关,最有趣的是真核细胞核仁。自然,这提高了在细菌类核中存在类似机制的可能性-受时间限制;这也可以使用多色荧光成像进行研究。 根据目标1的染色体组织成像还提供了将该工作与正在进行的工业相关项目整合的前景,该项目是在单细胞水平上快速检测抗菌素耐药性。在这里,我们将建立抗生素耐药表型的基础上的变化,类核结构的抗菌剂,并补充与物种鉴定从靶向探针-无论是在单细胞水平。将其与宽视野显微镜相结合提供了建立临床测定的前景。我们将提供概念验证结果,首先使用同质样本,然后转向异质临床分离株。基因机器小组和牛津的约翰·拉德克利夫医院已经就这一倡议进行了合作。目的3机械力在染色体组织和调控中的作用机械力至少可以通过两种不同的方式影响基因调控。第一种是通过触发机械敏感的生化途径,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
  • 批准号:
    10071520
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Partnership
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Beyond broadcasting: Community radio as a model community organisation
超越广播:社区广播作为模范社区组织
  • 批准号:
    DE240100416
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Robust scaling and self-organisation of the Drosophila anteroposterior axis
果蝇前后轴的稳健缩放和自组织
  • 批准号:
    BB/Y00020X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a novel biomaterial model of collagen mediated genetic disease for study of collagen organisation and drug development
开发胶原蛋白介导的遗传病的新型生物材料模型,用于研究胶原蛋白组织和药物开发
  • 批准号:
    2897511
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cheromotherapy relieves pain by neural circuit organisation
化学疗法通过神经回路组织缓解疼痛
  • 批准号:
    23K06825
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting psychosis-onset through online assessment of speech organisation
通过在线评估言语组织来预测精神病发作
  • 批准号:
    2886695
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling the Impact of the Proposed Newhurst Incinerator on the World Health Organisation (WHO) Urban Health Index (UHI) of Loughborough Town and Uni
模拟拟议的纽赫斯特焚烧厂对拉夫堡镇和大学世界卫生组织 (WHO) 城市健康指数 (UHI) 的影响
  • 批准号:
    2891122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Organisation and regulation of parasitism-associated genomic islands
寄生相关基因组岛的组织和调控
  • 批准号:
    BB/X016676/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了