Applications of Moving Mesh Finite Elements to Population Dynamics
移动网格有限元在群体动力学中的应用
基本信息
- 批准号:2112774
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project concerns mathematical modelling of ecological systems on temporal and spatial scales in quantitative population ecology. The purpose of the project is to exploit certain two-dimensional mathematical models of competition-diffusion systems, with aggregation and clustering effects, in dynamic domains. A version of the partilal differential Lotka-Volterra competition equations will be studied that describes a two-phase reaction-diffusion system. Of special interest is multi-phase systems, particularly those segregated with a dynamic interface between phases, for example between different physical states or between warring species. An effective numerical technique is the moving mesh finite element method (MMFEM) of Baines, Hubbard and Jimack, that uses a geometric conservation approach to mesh adaptation. This technique has recently been exploited by Watkins in her PhD thesis (Reading 2017) which considers the application of the MMFEM to systems of intraspecies and interspecies interactions with aggregating dynamics and clustering. A touchstone is the Stefan problem with dynamical interface behaviour, as in the work of Hilhorst. Following on from familiarisation with the background and the numerical technique, the student will compare the behaviour of the models against empirical data sets. The models lend themselves to dynamical adaptations in the sizes and shapes of the domains, as well as to alterations to the logistic terms and changes in parameters, without the need for further calculations. This adaptability means there is a wide range of realistic biological and ecological systems to which the models can be applied and validated. Comparison with data sets for species which show competition-diffusion-aggregation behaviour will be a particular objective of the research.The models are highly suitable for tackling how changes in the resource space might alter behaviour in a dynamical context. An aim will be to understand these requirements from both a mathematical and quantitative perspective. The subsequent development work will be in the direction of the research requirements of those ecological systems which would most benefit from a study which has access to this modelling capability.Key References:Baines, Hubbard and Jimack, (i) A Moving Mesh Finite Element Algorithm for the Adaptive Solution of Time-Dependent Partial Differential Equations with Moving Boundaries}, Appl. Numer. Math., 54, pp. 450-469, 2005, (ii) A moving-mesh finite element method and its application to the numerical solution of phase-change problems), Commun. in Comput.Phys., 6. pp. 595-624 (2009). (with R.Mahmoud)Watkins, A Moving Mesh Finite Element Method and its Application to Population Dynamics, PhD thesis, University of Reading, UK (2017).Hilhorst, Vanishing latent heat limit in a Stefan-like problem arising in biology, (Nonlinear analysis: real world applications), 4, pp.261-285, 2003.
该项目涉及数量种群生态学在时间和空间尺度上的生态系统数学建模。该项目的目的是利用某些二维数学模型的竞争-扩散系统,聚集和集群效应,在动态领域。将研究描述两相反应扩散系统的Lotka-Volterra偏微分竞争方程的一个版本。特别令人感兴趣的是多相系统,特别是那些在不同物理状态之间或交战物种之间具有动态界面的系统。Baines, Hubbard和Jimack的运动网格有限元法(MMFEM)是一种有效的数值方法,该方法采用几何守恒方法进行网格自适应。沃特金斯最近在她的博士论文(阅读2017)中利用了这项技术,该论文考虑了MMFEM在具有聚集动力学和聚类的种内和种间相互作用系统中的应用。一个试金石是动态界面行为的Stefan问题,就像Hilhorst的工作一样。在熟悉背景和数值技术之后,学生将把模型的行为与经验数据集进行比较。这些模型使自己能够动态适应域的大小和形状,以及改变逻辑项和参数的变化,而不需要进一步的计算。这种适应性意味着有广泛的现实生物和生态系统,这些模型可以应用和验证。与显示竞争-扩散-聚集行为的物种的数据集进行比较将是研究的一个特定目标。这些模型非常适合处理资源空间的变化如何改变动态上下文中的行为。我们的目标是从数学和定量的角度来理解这些需求。随后的开发工作将朝着那些生态系统的研究要求的方向进行,这些生态系统将最受益于利用这种建模能力的研究。[关键文献]Baines, Hubbard and Jimack, (i)带移动边界的时变偏微分方程自适应解的移动网格有限元算法},applied。号码。数学。(2)移动网格有限元法及其在相变问题数值求解中的应用[j] .岩石力学与工程学报,2005,第4期,第450-469页。在Comput.Phys。6。第595-624页(2009)。(with r.m hamud)Watkins,一种移动网格有限元法及其在人口动力学中的应用,博士论文,英国雷丁大学(2017)。李志强,张志强,李志强,等。基于非线性分析的生物系统研究进展,(自然科学版),第4期,第1-2页,2003。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
- 批准号:31201699
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
- 批准号:
2227080 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
- 批准号:
2108072 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
- 批准号:
2108269 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Development of moving surface mesh-incorporated particle method
移动表面网格结合粒子法的开发
- 批准号:
19K20283 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mesh-free methods with least squares approximations for kinetic equations with moving boundaries
具有移动边界的动力学方程的最小二乘近似无网格方法
- 批准号:
428845667 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Error Control Software for Partial Differential Equations Based on Moving Mesh Adaptivity
基于移动网格自适应的偏微分方程误差控制软件
- 批准号:
543095-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigation of Moving Mesh Methods for Gaussian Collocation PDE solvers
高斯配置偏微分方程求解器的移动网格方法研究
- 批准号:
524034-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
MODELLING THE RADIATIVE ISM IN MOVING MESH SIMULATIONS
在移动网格仿真中对辐射 ISM 进行建模
- 批准号:
1938544 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Simulation of Moving Objects on an Cartesian Mesh Using an Improved Alternating Direction Forcing Immersed Boundary Method
使用改进的交替方向强制浸没边界法模拟笛卡尔网格上的运动物体
- 批准号:
2091216 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Development of self-adaptive moving mesh methods for numerical computations of phenomena with large deformation based on the theory of integrable systems
基于可积系统理论的大变形现象数值计算自适应移动网格方法的发展
- 批准号:
15K04909 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)