Development of machine-learning methods for the optimization of binding selectivity for early stage drug discovery
开发机器学习方法来优化早期药物发现的结合选择性
基本信息
- 批准号:2113340
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the development of novel computational methods to support the drug development process in order to reduce the large amount of compounds needed to optimize a pre-clinical drug candidate. Specifically, the focus is on developing machine learning models to guide medicinal chemists in order to choose compounds more efficiently when optimizing drugs for binding selectivity or promiscuity. In recent years, the "one drug one target" model has been challenged, resulting in a shift in emphasis of optimizing drugs towards desired polypharmacology patterns, which requires the drug compound to bind to multiple different protein targets. One example where binding promiscuity of a drug is highly desired are bacterial metallo-beta-lactamase (MBL) inhibitors. This class of compounds is designed to tackle antibiotic resistances. A specific selectivity pattern is required where drug candidates should be active against as many different bacterial MBLs as possible while not affecting human MBLs. Currently, the development of multi-target MBL inhibitors is ongoing and no single inhibitor that hits the four most important bacterial MBL targets[1]: VIM-1, VIM-2, IMP-1 and NDM-1 is known. The first goal of this project is the development of computational methods to design new compounds with the desired selectivity pattern against the MBL protein family as well as the direct validation of those models in the lab. Ultimately, the goal is to create a methodology which can be used to predict and optimize binding selectivity of drug compounds for different protein families and can act as a general guideline for chemists to create selective or promiscuous compounds. As such, the project aims to introduce two major novelties: first, the machine learning method itself, which will be used to suggest new compounds to make in the lab; and second, the synthesis of a new MBL inhibitor that is effective against all desired bacterial MBL targets. The development of new antibiotics or antibiotic resistance inhibitors is desperately needed in a world where antibacterial resistance is increasing steadily and the development of treatments uneconomical for the pharmaceutical industry. Furthermore, the focus on polypharmacology and the increasing cost of drug discovery in the pharmaceutical industry calls for the development of new methods for the design of selective compounds in order to make the process cheaper and faster. This project therefore falls within the EPSRC "Artificial Intelligence Technologies", "Chemical Biology and Biological Chemistry" and "Computational & Theoretical Chemistry" research areas and is done in collaboration with Prof. Schofield at the Department of Organic Chemistry at the University of Oxford as well as in collaboration with the pharmaceutical company Glaxo-Smith-Kline.
该项目侧重于开发新的计算方法来支持药物开发过程,以减少优化临床前候选药物所需的大量化合物。具体来说,重点是开发机器学习模型来指导药物化学家,以便在优化药物结合选择性或乱交时更有效地选择化合物。近年来,“一药一靶点”模式受到了挑战,导致优化药物的重点转向所需的多药理学模式,这需要药物化合物结合多个不同的蛋白质靶点。细菌金属- β -内酰胺酶(MBL)抑制剂是高度期望药物结合杂乱性的一个例子。这类化合物是用来对付抗生素耐药性的。需要一种特定的选择性模式,候选药物应该对尽可能多的不同细菌MBLs有活性,同时不影响人类MBLs。目前,多靶点MBL抑制剂的开发正在进行中,目前还没有一种单一的抑制剂能够靶向4个最重要的细菌MBL靶点:VIM-1、VIM-2、IMP-1和NDM-1。该项目的第一个目标是开发计算方法,以设计具有针对MBL蛋白家族的所需选择性模式的新化合物,并在实验室中直接验证这些模型。最终,目标是创建一种方法,可用于预测和优化药物化合物对不同蛋白质家族的结合选择性,并可作为化学家创建选择性或混杂化合物的一般指导方针。因此,该项目旨在引入两个主要的新奇事物:首先,机器学习方法本身,将用于建议在实验室中制造新的化合物;第二,合成一种新的MBL抑制剂,对所有期望的细菌MBL靶标有效。在世界上,抗生素耐药性正在稳步增加,治疗方法的发展对制药工业来说是不经济的,迫切需要开发新的抗生素或抗生素耐药抑制剂。此外,对多药理学的关注和制药工业中药物发现成本的增加要求开发新的方法来设计选择性化合物,以使该过程更便宜和更快。因此,该项目属于EPSRC“人工智能技术”,“化学生物学和生物化学”和“计算与理论化学”研究领域,并与牛津大学有机化学系的Schofield教授以及葛兰素史克制药公司合作完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
- 批准号:
10091589 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
- 批准号:
10083188 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small Business Research Initiative
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
- 批准号:
480287 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
- 批准号:
23K09302 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant