Automated Processing and Analysis of the Human Right Ventricle for the Detection of Pulmonary Hypertension

用于检测肺动脉高压的人右心室自动处理和分析

基本信息

  • 批准号:
    2115404
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Cardiovascular health has been and continues to be one of the most important research topics in worldwide healthcare. Hypertension in particular has been a major concern for many years, and yet, the changes in heart function due to sustained pressure overload are still not well understood. For example, pulmonary hypertension (PH) is a deadly disease that is well known to considerably change the appearance and function of the heart, especially the right ventricle 1. However, there are no clear quantitative metrics relating to these changes in the heart that are available to physicians to accurately predict PH patient outcomes.Previous research has shown the existence of a relationship between the shape of the right ventricle and the progression of PH 2. More specifically, prior work has relied upon describing the shape of the right ventricle endocardial surface (RVES) through harmonic mappings to the sphere, with dimensionality reduction through direct methods such as PCA/POD 1 or spherical harmonics 2. However, these methods required manual alignment and feature identification under supervision from a trained cardiologist, resulting in significant preprocessing expense and a reduced dataset to train classifiers on. These preprocessing challenges are the most significant limitation in preventing further investigation of this link between RVES shape and the state of PH. As such, the main objective of the proposed research is to develop a machine learning approach for automated image extraction and processing to evaluate patterns relating to the shape and function of the human heart related to the state of PH. Several avenues are expected to be explored for integrating machine learning to substantially improve the efficiency and reliability of the process to analyse heart shape. Potential areas to explore include techniques such as Laplace-Beltrami Surface Mapping, which allow for automated detection of pole and dateline features, and have previously been demonstrated to create harmonic maps for structures within the brain 3. Another approach would be to avoid the need for manual alignment through the use of rotationally invariant features 4,5. Alternatively, with a much larger set of preprocessed data, more advanced neural network techniques such as autoencoders 6 or deep belief networks 7 could be used for dimensionality reduction. Direct classification through neural networks is also possible through convolutional networks applied to the surface of the harmonically mapped sphere 8 or the image data directly, or by fully connected networks applied to features detected through previously mentioned methods 9. References1 Wu, J. et al. Phys. Med. Biol. 57, 7905 (2012)2 Wu, J. et al. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 4, 327-343 (2016)3 Shi, Y. et al. in Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2008 147-154 (Springer Berlin Heidelberg, 2008)4 Kazhdan, M. et al. in Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing 156-164 (2003)5 Skibbe, H. et al. in 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009 1863-1869 (2009)6 Baldi, P. 37-49 (2012)7 Hinton, G. E. et al. Neural Comput. 18, 1527-1554 (2006)8 Maron, H. et al. {ACM} Trans. Graph. 36, 1-10 (2017)9 LeCun, Y. et al. in 9-50 (Springer, Berlin, Heidelberg, 1998)
心血管健康一直是并将继续是全球医疗保健领域最重要的研究课题之一。特别是高血压多年来一直是一个主要的问题,然而,由于持续的压力超负荷引起的心脏功能的变化仍然没有得到很好的理解。例如,肺动脉高压(PH)是一种致命的疾病,众所周知,它会显著改变心脏的外观和功能,特别是右心室1。然而,目前还没有与心脏这些变化相关的明确定量指标可供医生准确预测PH患者的结局。之前的研究表明,右心室形状与PH 2的进展之间存在关系。更具体地,现有工作依赖于通过到球体的谐波映射来描述右心室内表面(RVES)的形状,其中通过诸如PCA/POD 1或球谐函数2的直接方法进行降维。然而,这些方法需要在受过训练的心脏病专家的监督下进行手动对齐和特征识别,从而导致显著的预处理费用和减少的训练分类器的数据集。这些预处理挑战是阻止进一步研究RVES形状和PH状态之间的这种联系的最重要限制。拟议研究的主要目标是开发一种用于自动图像提取和处理的机器学习方法,以评估与PH状态相关的人类心脏的形状和功能相关的模式。探索整合机器学习,以大幅提高分析心脏形状过程的效率和可靠性。潜在的探索领域包括Laplace-Beltrami Surface Mapping等技术,该技术允许自动检测极点和日界线特征,并且先前已被证明可以为大脑内的结构创建谐波图3。另一种方法是通过使用旋转不变特征4、5来避免手动对准的需要。或者,对于更大的预处理数据集,可以使用更先进的神经网络技术,例如自动编码器6或深度置信网络7来进行降维。通过直接应用于谐波映射的球体8的表面或图像数据的卷积网络,或者通过应用于通过前述方法9检测的特征的全连接网络,也可以通过神经网络进行直接分类。参考文献1 Wu,J.等人Phys.Med.Biol.57,7905(2012)2 Wu,J.等人Comput.方法生物力学。BioMed.工程成像维斯。4,327-343(2016)3 Shi,Y.等人在Medical Image Computing and Computer-Assisted Intervention(MICCAI)2008 147-154(Springer柏林海德堡,2008)4 Kazhdan,M.等人在Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing 156-164(2003)5 Skibbe,H.等人在2009 IEEE第12届计算机视觉研讨会国际会议,ICCV研讨会2009 1863-1869(2009)6 Baldi,P. 37-49(2012)7欣顿,G. E.等人,Neural Comput. 18,1527-1554(2006)8 Maron,H.等.{ACM} Trans. Graph. 36,1-10(2017)9 LeCun,Y.等,9-50(Springer,柏林,海德堡,1998)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Sirt1通过调控Gli3 processing维持SHH信号促进髓母细胞瘤的发展及机制研究
  • 批准号:
    82373900
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
靶向Gli3 processing调控Shh信号通路的新型抑制剂治疗儿童髓母细胞瘤及相关作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An automated, fully auditable company revenue analysis generator, using natural language processing and argumentation theory to replace a currently manual process
自动化、完全可审计的公司收入分析生成器,使用自然语言处理和论证理论来取代当前的手动流程
  • 批准号:
    10017815
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Automated processing of sexual assault samples to enable rapid DNA analysis
自动处理性侵犯样本以实现快速 DNA 分析
  • 批准号:
    562031-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Automated processing of sexual assault samples to enable rapid DNA analysis
自动处理性侵犯样本以实现快速 DNA 分析
  • 批准号:
    562031-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Data processing methods for automated nuclear magnetic resonance (NMR) analysis
自动核磁共振 (NMR) 分析的数据处理方法
  • 批准号:
    101250
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Computer vision hardware and image analysis tools for automated inspection in the food processing industry
用于食品加工行业自动检测的计算机视觉硬件和图像分析工具
  • 批准号:
    138061-2007
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Computer vision hardware and image analysis tools for automated inspection in the food processing industry
用于食品加工行业自动检测的计算机视觉硬件和图像分析工具
  • 批准号:
    138061-2007
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An integrated machine learning system that allows visual and interactive semi-automated error analysis specialized in natural language processing
集成机器学习系统,可进行专门针对自然语言处理的可视化和交互式半自动错误分析
  • 批准号:
    21500130
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer vision hardware and image analysis tools for automated inspection in the food processing industry
用于食品加工行业自动检测的计算机视觉硬件和图像分析工具
  • 批准号:
    138061-2007
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Computer vision hardware and image analysis tools for automated inspection in the food processing industry
用于食品加工行业自动检测的计算机视觉硬件和图像分析工具
  • 批准号:
    138061-2007
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Computer vision hardware and image analysis tools for automated inspection in the food processing industry
用于食品加工行业自动检测的计算机视觉硬件和图像分析工具
  • 批准号:
    138061-2007
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了