How does low-temperature plasma damage the bacterial outer membrane?

低温等离子体如何损伤细菌外膜?

基本信息

  • 批准号:
    2116412
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Global challenges include microbial infections, and bacterial contamination ofsurfaces (e.g. food) and the environment. With resistance to antibiotics anincreasing concern alternative approaches need to be developed. One of theseis low-temperature plasma (LTP). A mix of biologically active reactive oxygenand nitrogen species are formed when high voltage is applied to a gas flow. Thechemical properties of atmospheric pressure LTP offers great promise as anantibiotic-free therapeutic for combating topical bacterial infection associatedwith wounds and skin ulcers, and are another potential weapon in our arsenalto combat antimicrobial resistance (AMR). However, there are key biologicaland physical questions remaining that need to be addressed to enhance thedevelopment of LTP for use in society. For example, the physical mechanismwhereby the reactive species in LTP damage the bacterial envelope and rendera cell non-viable is very poorly understood (e.g. Are pores formed in themembrane?). To further develop and optimise the use of LTP, a greaterunderstanding of the cellular mechanisms of its bactericidal effects is required,and this will be the focus of this project.Our current understanding of how LTP affects microbes is largely based onpopulation-level cell viability assays or single-cell imaging techniques with poortemporal resolution due to the need for extensive sample preparation prior toimaging. By combining our expertise in real-time single-cell fluorescenceimaging (CGB), LTP generation (DO'C), and bacterial phenotyping acrossdifferent time and length scales (MvdW), significant strides forward can bemade in understanding how plasma treatment alters the membrane bilayerboth in vivo and in vitro. This knowledge will feed into ongoing work in the YorkPlasma Institute that focuses on characterising and manipulating thecomposition of the reactive species in plasma to enhance biological activity.This project will investigate how different LTPs affect the cell envelope of Gramnegative bacterial strains with different cell surfaces by using a single-cell levelapproach. The student will exploit methods for fluorescently-labelling OMPsand LPS to monitor morphological changes in the cell envelope during and afterexposure to LTP. Single-cell imaging will be done using advanced multi-colourfluorescence microscopy methods and novel technology developed to allowsimultaneous exposure to different types and dosages of LTP. Time-lapse cellimaging after exposure to LTP will be done to determine if any morphologicaldifferences can be observed, and to identify potential phenotypic traits of non-viable cells and viable persister cells. Knowledge gained from this project will beused to develop a mechanistic model of LTP-induced membrane damage andidentify potential agents that could be used to enhance the damaging effect ofplasma on Gram negative bacteria.This project will provide excellent specialised training in cutting-edge single-cellanalytical methods combined with a good understanding of membrane biologyand microbiology. Professional skills training will be provided by the White RoseDTP. The student will also improve their professional skills by attending thesupervisors' lab meetings, departmental seminars and research conferences,and participating in outreach activities. The student will join a vibrant cross-disciplinary community of PhD students.This project is suitable for an applicant with a strong background in physics andchemistry, and a keen interest in understanding biological processes at themolecular level and participating in the development of novel antibacterialapproaches.
全球性挑战包括微生物感染、表面(如食品)和环境的细菌污染。随着对抗生素耐药性的日益关注,需要开发替代方法.其中之一就是低温等离子体(LTP)。当向气流施加高电压时,会形成具有生物活性的活性氧和氮物质的混合物。大气压LTP的化学性质为对抗与伤口和皮肤溃疡相关的局部细菌感染提供了很大的希望,并且是我们对抗抗菌素耐药性(AMR)的另一种潜在武器。然而,还有一些关键的生物和物理问题需要解决,以促进LTP在社会中的应用。例如,LTP中的活性物质破坏细菌包膜并使细胞失去活力的物理机制知之甚少(例如,膜上是否形成了孔?)。为了进一步开发和优化LTP的使用,需要更深入地了解其杀菌作用的细胞机制,这将是本项目的重点。我们目前对LTP如何影响微生物的理解主要基于群体水平的细胞活力测定或单细胞成像技术,由于成像前需要大量的样品制备,因此时间分辨率很差。通过结合我们在实时单细胞荧光成像(CGB),LTP生成(DO'C)和跨不同时间和长度尺度(MvdW)的细菌表型分析方面的专业知识,可以在了解等离子体处理如何在体内和体外改变膜双层方面取得重大进展。这一知识将为约克等离子体研究所正在进行的工作提供信息,该研究所的重点是表征和操纵血浆中活性物质的组成以增强生物活性。该项目将通过使用单细胞水平方法研究不同的LTP如何影响具有不同细胞表面的革兰氏阴性细菌菌株的细胞包膜。学生将利用荧光标记OMPs和LPS的方法来监测LTP期间和之后细胞包膜的形态变化。单细胞成像将使用先进的多色荧光显微镜方法和新技术来完成,该技术允许同时暴露于不同类型和剂量的LTP。将在暴露于LTP后进行延时细胞成像,以确定是否可以观察到任何形态学差异,并鉴定非活细胞和活的持续细胞的潜在表型性状。从这个项目中获得的知识将用于开发LTP诱导的膜损伤的机制模型,并确定可用于增强血浆对革兰氏阴性菌的损伤作用的潜在试剂。这个项目将提供尖端单细胞分析方法的优秀专业培训,并结合对膜生物学和微生物学的良好理解。白色玫瑰DTP将提供专业技能培训。学生还将通过参加导师的实验室会议,部门研讨会和研究会议以及参加外展活动来提高他们的专业技能。学生将加入一个充满活力的跨学科博士生社区。该项目适合具有强大的物理和化学背景的申请人,并对分子水平上的生物过程和参与新型抗菌方法的开发有浓厚的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does implementation of Pay-for-Performance and Collaborative Care impact utilization and health outcomes for Medicaid Behavioral Health patients
按绩效付费和协作护理的实施如何影响医疗补助行为健康患者的利用率和健康结果
  • 批准号:
    10463148
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
How does implementation of Pay-for-Performance and Collaborative Care impact utilization and health outcomes for Medicaid Behavioral Health patients
按绩效付费和协作护理的实施如何影响医疗补助行为健康患者的利用率和健康结果
  • 批准号:
    10673632
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
How does the brain sense low glucose levels and switch on corrective actions?
大脑如何感知低血糖水平并采取纠正措施?
  • 批准号:
    nhmrc : GNT1160065
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Project Grants
How does low phosphorus availability in volcanic soil affect the soil nitrogen distribution in a watershed?
火山土壤中的低磷有效性如何影响流域土壤氮的分布?
  • 批准号:
    19K15873
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How Does an Academically-Oriented Kindergarten Classroom Impact Children's Outcomes?
以学术为导向的幼儿园课堂如何影响儿童的学习成果?
  • 批准号:
    9035701
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Self-consistent modeling of the auroral ionosphere-thermospher : how does sever space weather affect low-earth orbiting satellites?
极光电离层-热层的自洽模型:恶劣的空间天气如何影响低地轨道卫星?
  • 批准号:
    249806-2011
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
How Does an Academically-Oriented Kindergarten Classroom Impact Children's Outcomes?
以学术为导向的幼儿园课堂如何影响儿童的学习成果?
  • 批准号:
    9197674
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Self-consistent modeling of the auroral ionosphere-thermospher : how does sever space weather affect low-earth orbiting satellites?
极光电离层-热层的自洽模型:恶劣的空间天气如何影响低地轨道卫星?
  • 批准号:
    249806-2011
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Self-consistent modeling of the auroral ionosphere-thermospher : how does sever space weather affect low-earth orbiting satellites?
极光电离层-热层的自洽模型:恶劣的空间天气如何影响低地轨道卫星?
  • 批准号:
    249806-2011
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Self-consistent modeling of the auroral ionosphere-thermospher : how does sever space weather affect low-earth orbiting satellites?
极光电离层-热层的自洽模型:恶劣的空间天气如何影响低地轨道卫星?
  • 批准号:
    249806-2011
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了