Development of Vascular Inspired Electrospun Hollow Fibre Membranes for use in 3D Tissue Culture
开发用于 3D 组织培养的受血管启发的静电纺丝中空纤维膜
基本信息
- 批准号:2116587
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The indispensability of two-dimensional (2D) tissue culture techniques is marred by its insufficient mimicry of cell-cell and cell-extracellular matrix (ECM) interactions. In static three-dimensional (3D) tissue culture scaffolds more than 200 m thick, the short effective range of diffusive mass transfer results in ischemic tissue damage and necrotic regions1-4.In vivo, vasculature transports nutrients and oxygen to tissues through arteries and removes waste metabolites in veins. In leu of a native vascular network in tissue engineered constructs, hollow fibre membranes (HFMs) have been utilised to facilitate convective mass transport5-7. The rigidity and monolithic surface of existing HFMs, however, disrupts passive mechanical cues while inhibiting multimodal mechanical stimulation. Electrospinning, a versatile technique enabling the drawing of nano-fibres from polymer solutions or melts, has enabled the development of bioactive materials which mimic the fibrous structure of the ECM8. Through the utilisation of this technique, electrospun vascular scaffolds (EVSs) have been developed to exhaustively mimic the morphology and mechanical properties of native vasculature. The methods used to produce EVSs have, however, limited their length to short sections. Recently electrospinning has also been implemented in the production of long flexible filaments with similar mechanical properties to that of tendon9. The combination of these techniques may thereby facilitate the novel production of long sections of vascular mimetic HFMs. These in turn may be used to facilitate nutrient and gas transfer while maintaining physiological mechanical cues10,11.While trial and error fabrication has predominantly driven EVS development to date, several complications are still associated with their use. Recent developments in vascular growth and regeneration modelling techniques hold promise towards their use to expedite the identification of optimal scaffold characteristics12. Concurrently, in view of the complex interconnected nature of biological systems, mathematical modelling techniques have been used to decipher the underlying mechanisms determining; culture outcomes, optimising culture conditions and improving culture yields of several cell types13-16. By combining lessons learnt from each of these model development techniques it may thereby be possible to develop a novel model to enable the identification of optimal culture conditions within an electrospun HFM bioreactor. Considering this current state of affairs, my research aims to answer the questions: 1) Can HF membranes be fabricated continuously by electrospinning in a reproducible way to mimic the morphological and mechanical properties of native vasculature and facilitate nutrient exchange to a tertiary scaffold in static and dynamic culture conditions?2) Can such HFs be used as a substrate for biomedical research, potentially for the production of biomaterials intended for therapeutic application?To answer these questions, my specific objectives are therefore:I. Produce novel electrospun HFs which mimic the morphology and mechanical properties of native vasculature through a novel continuous process in a reproducible controllable manner.II. Characterise the transport properties of the membranes and how they may change under mechanical loadingIII. Develop a novel mathematical model to describe the transport across the electrospun HFMsIV. Develop a static and mechanically dynamic HF bioreactor, geometrically informed from the electrospun HFM transport modelV. Evaluate the use of the electrospun HFs for tissue culture in (a) static and (b) mechanically dynamic HF bioreactor configurationsThis project falls within the EPSRC Health Care Technologies research area, specifically towards the development of biomaterials and tissue engineering.
二维(2D)组织培养技术的不可或缺性因其对细胞-细胞和细胞-细胞外基质(ECM)相互作用的模拟不足而受到损害。在厚度超过200 m的静态三维(3D)组织培养支架中,扩散传质的有效范围较短,导致缺血性组织损伤和坏死区域1 - 4。在体内,血管系统通过动脉将营养物质和氧气输送到组织,并在静脉中清除代谢废物。在组织工程构建体中的天然血管网络的leu中,中空纤维膜(HFM)已被用于促进对流质量运输5 -7。然而,现有HFM的刚性和整体表面破坏了被动机械提示,同时抑制了多模态机械刺激。静电纺丝是一种多功能技术,可以从聚合物溶液或熔体中拉伸纳米纤维,从而能够开发出模仿ECM纤维结构的生物活性材料8。通过利用这种技术,电纺血管支架(EVS)已被开发为详尽地模拟天然血管的形态和机械性能。然而,用于生产EVS的方法将它们的长度限制为短段。最近,静电纺丝也被用于生产具有与肌腱相似的机械性能的长柔性细丝9。这些技术的组合可以由此促进血管模拟HFM的长切片的新生产。这些反过来可以用于促进营养和气体转移,同时保持生理机械线索10,11。尽管迄今为止,试错制造主要推动了EVS的发展,但仍有一些并发症与其使用有关。血管生长和再生建模技术的最新发展有望用于加快最佳支架特性的鉴定12。同时,鉴于生物系统的复杂的相互关联的性质,数学建模技术已被用于破译决定培养结果、优化培养条件和提高几种细胞类型的培养产率的潜在机制13 -16。通过结合从这些模型开发技术中的每一种中吸取的经验教训,从而可以开发新的模型,以能够鉴定电纺HFM生物反应器内的最佳培养条件。考虑到这种现状,我的研究旨在回答以下问题:1)HF膜能否通过静电纺丝以可重复的方式连续制造,以模拟天然血管的形态和机械特性,并在静态和动态培养条件下促进营养交换到三级支架?2)这种HF是否可以用作生物医学研究的基质,可能用于生产用于治疗应用的生物材料?为了回答这些问题,我的具体目标是:一。以可再现的可控方式通过新型连续工艺生产新型电纺HF,其模拟天然脉管系统的形态和机械特性。表征膜的传输特性以及它们在机械负载下如何变化III。开发一种新的数学模型来描述通过静电纺丝HFMsIV的运输。开发静态和机械动态HF生物反应器,从静电纺丝HFM传输模型V几何学上获知。评价在(a)静态和(B)机械动态HF生物反应器配置中使用电纺HF进行组织培养。该项目福尔斯属于EPSRC医疗保健技术研究领域,特别是生物材料和组织工程的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Uncovering the evolutionary history and significance of Fibonacci spirals in vascular plants
揭示维管植物中斐波那契螺旋的进化历史和意义
- 批准号:
EP/Y037138/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
A new vascular regenerative therapy for myocardial ischemia using intergin-specific circulating monocytes
使用intergin特异性循环单核细胞治疗心肌缺血的新血管再生疗法
- 批准号:
24K19425 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atypical Chemokine Receptors orchestrate changes in vascular patterning during fibrotic liver disease via Endothelial-to-Mesenchymal Transition.
非典型趋化因子受体通过内皮-间质转化协调纤维化肝病期间血管模式的变化。
- 批准号:
MR/Y013751/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
NSF-ANR MCB/PHY: Elucidating Plant Vascular Function and Dynamics in Planta and on Chip
NSF-ANR MCB/PHY:阐明植物体内和芯片上的植物血管功能和动力学
- 批准号:
2412533 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
- 批准号:
MR/Z503897/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Neuro-Vascular Unitの構築を基盤とした、もやもや病の病態解明
基于神经血管单元的构建阐明烟雾病的病理学
- 批准号:
24K18427 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing a digital twin of 3D vascular systems to study haemorrhagic viral diseases
开发 3D 血管系统的数字孪生来研究出血性病毒性疾病
- 批准号:
NC/Y500586/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
In-Vitro evaluation of the effectiveness of a novel Dual Drug Coated Balloon catheter to treat Vascular and cardiovascular diseases
新型双药物涂层球囊导管治疗血管和心血管疾病有效性的体外评估
- 批准号:
10109618 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
- 批准号:
BB/Y513994/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: 2024 Multiscale Plant Vascular Biology Gordon Research Conference and Seminar
会议:2024多尺度植物维管生物学戈登研究会议暨研讨会
- 批准号:
2421814 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




