Representation Theory of the Partition Algebras and Symmetric Groups
配分代数和对称群的表示论
基本信息
- 批准号:2117788
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BACKGROUND: REPRESENTATIONS OF THE SYMMETRIC GROUPSOne of the most important conceptual tools in the modern sciences is the notion of symmetry. A precise definition was given by the mathematician Hermann Weyl: symmetry is the invariance of an object ( e.g. a configuration of particles in space) under certain transformations. The set of all transformations leaving an object unchanged form what is called a group. Representation theory is the study of how an abstract group ( or an algebra) can transform a space. The symmetric groups form one of the most important families of groups, as any finite group can be found inside some symmetric group. Over the complex numbers the representations of the symmetric groups were classified and constructed by Young in 1930. However, over fields of positive characteristic ( the so-called modular case) the situation is considerably more complicated. A classification of the irreducible representations (that is the building blocks which, glued together, form any representation) exists but constructing these and understanding how they can be glued together are still major open problems in this area. A very profitable approach has been to relate the representations of the symmetric groups to that of other algebraic objects which admit richer mathematical structures. The classical example is the relationship with the general linear group via Schur-Weyl duality, which allows to transfer some of the tools from Lie theory to the symmetric group side. More recently, Jones [ll] and Martin [12] proved the existence of a similar duality, over the complex numbers, between the symmetric group and another algebraic structure which originally arose in Mathematical Physics, namely the partition algebra. Although this duality was established in the 1990's, surprisingly little work has been done since to develop and exploit this connection to advance our understanding of the representation theory of the symmetric group, especially in the modular case. MAIN OBJECTIVES OF THE PROPOSED RESEARCHIt is widely expected that the duality established by Jones and Martin will carry over to arbitrary fields, although as far as I am aware there is no available proof yet. My first objective is therefore to extend the duality between the symmetric group and the partition algebra to fields of positive characteristics. My second objective will then be to develop a systematic study of the functors between the two module categories which arise from this duality. I expect to obtain substantial new insight into the modular representation theory of the symmetric group in this way. It should be noted that many open problems also remain in the modular representation theory of the partition algebra. My third objective aims to address these by constructing an 'affine version' of the partition algebra. This is inspired by similar constructions for the symmetric group and the Brauer algebra which have brought very significant insights into their representation theory. METHODOLOGY AND WORK PLANTo reach my first objective (the extension of the duality to the modular case) I plan to use methods similar to those developed in invariant theory in [6] and for the Brauer algebra in [7]. The study of the so-called Schur functors arising from this duality (second objective) will most likely require the introduction of new classes of modules for the partition algebra, such as generalised permutation and Young modules (see [10] for analoguous results for the Brauer algebras). I also plan to use some of the methods developed in [9] in the classical Schur-Weyl duality. It should be noted, however, that our new setting has a major difference from the Brauer or the classical context in that we not have a Lie theory object in play. I expect that the third objective (the construction of an affine partition algebra), will provide the necessary extra structure in this case.
背景:对称群的表示现代科学中最重要的概念工具之一是对称性的概念。数学家赫尔曼·魏尔(Hermann Weyl)给出了一个精确的定义:对称性是物体(例如空间中的粒子配置)在某些变换下的不变性。保持一个对象不变的所有变换的集合,形成所谓的组。表示论是研究抽象群(或代数)如何变换空间的理论。对称群是最重要的群族之一,因为任何有限群都可以在某个对称群中找到。在复数的代表性的对称群进行了分类和建设的青年在1930年。然而,在具有正特征的域(所谓的模情形)上,情况要复杂得多。不可约表示的分类(即粘在一起形成任何表示的构建块)存在,但构建这些表示并理解它们如何粘在一起仍然是这一领域的主要开放问题。一个非常有益的做法一直是有关的代表性的对称群的其他代数对象承认更丰富的数学结构。经典的例子是通过Schur-Weyl对偶与一般线性群的关系,它允许将一些工具从李理论转移到对称群方面。最近,Jones [11]和Martin [12]证明了在复数上,对称群和另一个最初出现在数学物理中的代数结构(即划分代数)之间存在类似的对偶。虽然这种对偶性是在20世纪90年代建立的,但令人惊讶的是,从那时起,很少有人做工作来发展和利用这种联系,以促进我们对对称群的表示论的理解,特别是在模的情况下。人们普遍认为,琼斯和马丁建立的对偶性将延续到任意领域,尽管据我所知,还没有可用的证据。因此,我的第一个目标是将对称群和划分代数之间的对偶性扩展到具有正特征的领域。我的第二个目标是系统地研究由这种对偶性产生的两个模范畴之间的函子。我期望以这种方式获得对对称群的模表示论的实质性的新见解。应该指出的是,许多开放的问题也仍然存在于划分代数的模表示理论。我的第三个目标是通过构建一个“仿射版本”的分区代数来解决这些问题。这是受到类似的结构的对称群和布劳尔代数带来了非常重要的见解,他们的代表性理论。方法和工作计划为了达到我的第一个目标(对偶的扩展到模的情况下),我计划使用类似的方法,在不变量理论[6]和Brauer代数[7]。研究由这种对偶性产生的所谓Schur函子(第二个目标)很可能需要为划分代数引入新的模类,例如广义置换和Young模(参见[10] Brauer代数的类似结果)。我还计划在经典Schur-Weyl对偶中使用[9]中开发的一些方法。然而,应该注意的是,我们的新环境与布劳尔或经典环境有一个主要区别,那就是我们没有一个李论对象在起作用。我期望第三个目标(仿射划分代数的构造)将在这种情况下提供必要的额外结构。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The center of the partition algebra
划分代数的中心
- DOI:10.1016/j.jalgebra.2020.10.041
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Creedon S
- 通讯作者:Creedon S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Symmetries of String Theory Partition Functions
弦论配分函数的对称性
- 批准号:
2111764 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
- 批准号:
EP/P006132/1 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grant
Category partition black-box software testing: theory, tool support and experiments
类别划分黑盒软件测试:理论、工具支持和实验
- 批准号:
RGPIN-2016-06214 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
- 批准号:
EP/P006108/1 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grant
Studies on the partition functions of quantum integrable models and representation theory of symmetric polynomials
量子可积模型的配分函数及对称多项式表示论研究
- 批准号:
15H06218 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up