ASSESSING THE PERFORMANCE OF AN INTER-MARKET TRADING STRATEGY IN THE LOW AND HIGH FREQUENCY DOMAIN BASED ON HISTORIC DATA USING MACHINE LEARNING

使用机器学习根据历史数据评估低频和高频领域间市场交易策略的表现

基本信息

  • 批准号:
    2118751
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

An interesting application and expansion of the deep learning concepts should be pioneered in PhD research by applying them to high frequency order book data, namely to use machine learning tools to derive a high frequency trading mechanism. As researched in coursework during my MSc in Algorithmic Trading, I evaluated that NVWAP (Notional Volume Weighted Average Price) curves are governed by four statistics, namely steepening/flattening and contraction/expansion. Contraction/expansion of NVWAP curves is quantified by computing the change in total volume on both, the bid and ask-side of the limit order book. This concept should be taken as input and further developed by machine learning tools to derive whether an automated trading system could operate profitably in practice. To do this, the data is supposed to be separated in various chunks serving as input for the deep neural net. Its findings should then be applied on trading real time markets and evaluated whether a profitable operation is achievable. To appreciate inter-market relations, two or more correlated assets can be investigated simultaneously to derive trading decisions. The science of machine learning is quite new compared to the concepts of finance and investments. Given recent developments in terms of the amount of data recorded and being accessible, and modern computing technology, it is worthwhile to search for synergy between the two subjects and scan the data for patterns that have not been obvious for market participants before. Clearly, this is a challenging task since powerful players such as large investment banks, but also institutional and professional investors aim at doing the same. Recent and major advances in combining advanced computational tools and finance further motivate to do so. There is no magic in machine learning technique; however, it is capable of learning patterns of data from the past to apply its findings in future. Grounded on the general definition of machine learning to be a computer program learning from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E, the task will be investigated. One of the most recent tools in machine learning are deep neural nets (DNN). A deep neural network (DNN) is an artificial neural network with multiple hidden layers of units between the input and output layers. For example, one can built deep neural networks for modeling mortgage delinquency and prepayment risk using a dataset of over 120 million prime and subprime mortgages and simulate mortgage 17 portfolios for risk analysis purposes. It was even found that some of the classical theory in finance such as the efficient market hypothesis might be challenged by deep learning. Yet another motivation is to apply deep learning to discover trading strategies not yet executed in the markets. To do so, the historic data was split up into two constituent parts. Firstly, 80% of the historic data were defined to be test data, i.e. data on which the market structure was investigated. The remaining 20% were training data, i.e. data the neural net has not seen before. In other words, the learning outcomes of 80% of the data were now applied to the remaining 20% of the data with the result that several financial instruments could indeed be profitably traded.
深度学习概念的有趣应用和扩展应该在博士研究中开创,将其应用于高频订单簿数据,即使用机器学习工具推导高频交易机制。正如我在算法交易硕士期间的课程研究中所研究的那样,我评估了 NVWAP(名义交易量加权平均价格)曲线由四种统计数据控制,即陡峭/平坦和收缩/扩张。 NVWAP 曲线的收缩/扩张是通过计算限价订单簿的买盘和卖盘总量的变化来量化的。这个概念应该被机器学习工具作为输入并进一步开发,以得出自动交易系统在实践中是否可以盈利。为此,数据应该被分成不同的块,作为深度神经网络的输入。然后,其研究结果应应用于实时市场交易,并评估是否可以实现盈利。为了了解市场间关系,可以同时研究两个或多个相关资产以得出交易决策。与金融和投资的概念相比,机器学习科学是相当新的。考虑到最近在记录的数据量和可访问性以及现代计算技术方面的发展,寻找两个主题之间的协同作用并扫描数据以寻找市场参与者以前不明显的模式是值得的。显然,这是一项具有挑战性的任务,因为大型投资银行等强大参与者以及机构和专业投资者也致力于这样做。先进计算工具和金融相结合的最新重大进展进一步推动了这一点。机器学习技术并没有什么神奇之处;然而,它能够学习过去的数据模式,以便在未来应用其发现。基于机器学习的一般定义,即计算机程序从关于某类任务 T 和性能测量 P 的经验 E 中学习,如果按 P 测量的 T 中任务的性能随着经验 E 的增加而提高,则将对该任务进行研究。机器学习领域最新的工具之一是深度神经网络(DNN)。深度神经网络 (DNN) 是一种人工神经网络,在输入层和输出层之间具有多个隐藏单元层。例如,人们可以使用超过 1.2 亿个优质和次级抵押贷款的数据集构建深度神经网络,用于对抵押贷款拖欠和提前还款风险进行建模,并模拟抵押贷款 17 投资组合以进行风险分析。甚至发现金融领域的一些经典理论,例如有效市场假说,可能会受到深度学习的挑战。另一个动机是应用深度学习来发现市场上尚未执行的交易策略。为此,历史数据被分为两个组成部分。首先,将80%的历史数据定义为测试数据,即调查市场结构的数据。剩下的 20% 是训练数据,即神经网络以前从未见过的数据。换句话说,80% 数据的学习成果现在被应用到剩下的 20% 数据中,结果是一些金融工具确实可以进行有利可图的交易。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Inter-brain synchrony analysis in teleoperated collaborative social tasks to predict collective performance
远程操作协作社交任务中的脑间同步分析以预测集体表现
  • 批准号:
    24K17253
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preventing Inter-generational Education Crisis: A Root and Branch Machine Learning-Enabled Platform for Diagnosing, Benchmarking and Managing Pupils’ Performance (EDURIGHT)
预防代际教育危机:用于诊断、基准测试和管理学生表现的彻底机器学习平台 (EDURIGHT)
  • 批准号:
    10002310
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
SiMBal 2.0: Quantifying co-culture performance as a function of condition-dependent inter-cell mass exchange
SiMBal 2.0:量化共培养性能作为条件依赖性细胞间物质交换的函数
  • 批准号:
    428038451
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
An inter-individual difference of the tES effect on throwing performance and related factors of the differences.
tES对投掷成绩影响的个体差异及其相关因素。
  • 批准号:
    18K17871
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Empirical Study on relationship between inter-fir network and corporate performance using dynamic network analysis
基于动态网络分析的杉木间网络与企业绩效关系实证研究
  • 批准号:
    16K01243
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: The Performance Evaluation of Intra-domain Bandwidth Allocation and Inter-domain Routing Algorithms for a QoS-guaranteed Routing Path Discovery
EAGER:用于 QoS 保证的路由路径发现的域内带宽分配和域间路由算法的性能评估
  • 批准号:
    1633978
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Getting to the Source of Inter-Regional Variation in Patient Flow Performance: A Complex Systems Perspective
探究患者流量表现的区域间差异的根源:复杂系统的视角
  • 批准号:
    317619
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
EARS: SAVANT - High Performance Dynamic Spectrum Access via Inter Network Collaboration
EARS:SAVANT - 通过网络间协作进行高性能动态频谱访问
  • 批准号:
    1247764
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Performance implications of Individual Creativity and inter-firm networks :Value Creation Systems in the Japanese Music Industry
个人创造力和公司间网络的绩效影响:日本音乐产业的价值创造系统
  • 批准号:
    25780248
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on the Influence of Inter-firm Diversity on the Performance of Global Strategic Alliances
企业间多元化对全球战略联盟绩效的影响研究
  • 批准号:
    24530475
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了