Cell-fate determinants of yeast pseudohyphal growth
酵母假菌丝生长的细胞命运决定因素
基本信息
- 批准号:6599397
- 负责人:
- 金额:$ 31.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:Saccharomyces cerevisiae cell adhesion molecules cell differentiation cell growth regulation cell population study cellular polarity developmental genetics fungal genetics green fluorescent proteins growth media microarray technology microorganism growth morphology nutrient requirement nutrition related tag protein localization transcription factor virulence
项目摘要
DESCRIPTION (provided by applicant): Nitrogen deprivation causes diploid cells of the yeast S. cerevisiae to depart from vegetative growth and form pseudohyphae. These are filaments of rod-shaped cells that radiate from the periphery of a colony and spread over and into the agar medium. The transition arises when a yeast form (YF) cell divides and gives rise to a PH daughter that has a different developmental fate from its mother. This asymmetric switch is fundamentally the same as those that occur during the production of distinct lineages from pluripotent stem cells in humans. In yeast as in mammals, the fate change requires co-ordination of programs that are controlled by multiple transcription factors. Some are responsive to extracellular stimuli and others on cell inherent mechanisms for asymmetric segregation of the critical fate determining factors.
S. cerevisiae Ash 1 is a GATA-family transcription factor that is differentially segregated to daughters and is essential for the PH transition. While the mechanism responsible for asymmetric localization of Ash1 has been elucidated, very little is known about the daughter-specific program that it mediates to establish the PH fate. This program has been difficult to study by standard methods because PH colonies are a heterogeneous mixture of cell-types. The applicant proposes to develop strategies using green fluorescent protein (GFP) labels that allow analyses of promoter function and protein and mRNA dynamics in individual living cells. Currently, the cell-surface adhesion protein, Flo11, is the only known gene product required for PH growth whose transcription is dependent on Ash1. Aim (1) focuses on Flo11 transcriptional regulation. Studies will define the Ash 1-dependent mechanism at this promoter and reveal how Ash1 collaborates with signal dependent transcriptional regulators of Flo11. Aim (2) addresses daughter-specific localization and functions of Flo11 in PH growth. Aim (3) proposes a novel strategy to generate daughter-specific complementary deoxyribonucleic acids (cDNAs) for use in array analyses to identify daughter-specific genes subject to Ash1 control.
The principles the applicants establish for the mechanism by which Ash1 transcriptional control is integrated with that of signal dependent transcription factors will be broadly applicable to the GATA-family. In particular, Ash1 is conserved and required for the YF-PH transition that is essential for virulence of pathogenic fungi. Thus, the molecular mechanisms Dr. Errede defines will be directly applicable to those underlying fungal pathogenicity. Additionally, the project has the potential to reveal fungal proteins that would be excellent candidates as targets for drug intervention.
描述(由申请人提供):氮剥夺导致酿酒酵母二倍体细胞脱离营养生长,形成假菌丝。这些是杆状细胞的细丝,从菌落的外围辐射出来,扩散到琼脂培养基中。当酵母形式(YF)细胞分裂并产生PH子细胞时,这种转变就出现了,PH子细胞的发育命运与母细胞不同。这种不对称开关基本上与人类多能干细胞产生不同谱系时发生的开关相同。在酵母和哺乳动物中,命运的改变需要由多个转录因子控制的程序的协调。一些是对细胞外刺激的反应,另一些是对细胞固有机制的不对称分离的关键命运决定因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BEVERLY ERREDE其他文献
BEVERLY ERREDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BEVERLY ERREDE', 18)}}的其他基金
MAP kinase regulation of cell-fate transitions in yeast
MAP 激酶对酵母细胞命运转变的调节
- 批准号:
8079935 - 财政年份:2010
- 资助金额:
$ 31.25万 - 项目类别:
MAP kinase regulation of cell-fate transitions in yeast
MAP 激酶对酵母细胞命运转变的调节
- 批准号:
8208168 - 财政年份:2009
- 资助金额:
$ 31.25万 - 项目类别:
MAP kinase regulation of cell-fate transitions in yeast
MAP 激酶对酵母细胞命运转变的调节
- 批准号:
7750028 - 财政年份:2009
- 资助金额:
$ 31.25万 - 项目类别:
MAP kinase regulation of cell-fate transitions in yeast
MAP 激酶对酵母细胞命运转变的调节
- 批准号:
7995234 - 财政年份:2009
- 资助金额:
$ 31.25万 - 项目类别:
Spatiotemporal modeling of signal transduction in yeast
酵母信号转导的时空模型
- 批准号:
8815612 - 财政年份:2006
- 资助金额:
$ 31.25万 - 项目类别:
Cell-fate determinants of yeast pseudohyphal growth
酵母假菌丝生长的细胞命运决定因素
- 批准号:
6743105 - 财政年份:2003
- 资助金额:
$ 31.25万 - 项目类别:
Cell-fate determinants of yeast pseudohyphal growth
酵母假菌丝生长的细胞命运决定因素
- 批准号:
6890909 - 财政年份:2003
- 资助金额:
$ 31.25万 - 项目类别:
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 31.25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 31.25万 - 项目类别:
Continuing Grant
Non-Canonical Roles for Cell-Adhesion Molecules in Presynaptic Assembly
细胞粘附分子在突触前组装中的非典型作用
- 批准号:
10751904 - 财政年份:2023
- 资助金额:
$ 31.25万 - 项目类别:
Mechanisms underlying the roles of cell adhesion molecules in the circadian timing system
细胞粘附分子在昼夜节律系统中的作用机制
- 批准号:
RGPIN-2020-05262 - 财政年份:2022
- 资助金额:
$ 31.25万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms underlying the roles of cell adhesion molecules in the circadian timing system
细胞粘附分子在昼夜节律系统中的作用机制
- 批准号:
RGPIN-2020-05262 - 财政年份:2021
- 资助金额:
$ 31.25万 - 项目类别:
Discovery Grants Program - Individual
The role of cadherin cell adhesion molecules in postnatal porcine islet cell function.
钙粘蛋白细胞粘附分子在出生后猪胰岛细胞功能中的作用。
- 批准号:
449549 - 财政年份:2020
- 资助金额:
$ 31.25万 - 项目类别:
Studentship Programs
Role of insect olfactory receptors and cell adhesion molecules in circuit organization
昆虫嗅觉受体和细胞粘附分子在电路组织中的作用
- 批准号:
2006471 - 财政年份:2020
- 资助金额:
$ 31.25万 - 项目类别:
Continuing Grant
Elucidation of epithelial-connective tissue interactions mediated by cell adhesion molecules in drug-induced gingival hyperplasia
阐明药物诱导的牙龈增生中细胞粘附分子介导的上皮-结缔组织相互作用
- 批准号:
20K23026 - 财政年份:2020
- 资助金额:
$ 31.25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of novel intervening approaches to cancer progression by comprehensive analyses of interactions between cell adhesion molecules
通过综合分析细胞粘附分子之间的相互作用,开发癌症进展的新干预方法
- 批准号:
20K21539 - 财政年份:2020
- 资助金额:
$ 31.25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the mechanism of gastric cancer progression and development of innovative therapeutic strategies focusing on cell adhesion molecules
阐明胃癌进展机制并开发以细胞粘附分子为重点的创新治疗策略
- 批准号:
20K22831 - 财政年份:2020
- 资助金额:
$ 31.25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




