Statistical Machine Learning for Emergency Hospital Admissions

急诊入院的统计机器学习

基本信息

  • 批准号:
    2181964
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This PhD work will join an ongoing collaboration with NHS Scotland seeking to predict risk of emergency hospital admission to assist healthcare professionals in prioritising patients with complex care needs, with the ultimate aim of reducing emergency hospital attendance. This facilitates both better patient outcomes and potential cost savings for the health service. There is a population level dataset, providing longitudinal diagnostic and patient level data for the full Scottish population that has used an NHS hospital (~3.6 million individuals). Prior work to date has only involved a collection of logistic regression models which were based on expertly elicited cohorts of patients in the population. These models were combined using a simple unlearned rule. Therefore, this PhD will seek to develop new statistical methodology inspired by a clear focus on addressing the above applied question.Early work will examine the effect of existing unsupervised learning (or clustering) methods to learn patient cohorts from the data without expert intervention. This will quickly move on and extend to a fully principled Bayesian analysis where new methodology will need to be developed to enable joint inference of both patient cohorts and logistic regression model parameters, falling in the domain of so-called mixture of expert modelling. Achieving this goal will likely require extension of existing computational statistics methods: although methods currently exist for model based clustering and logistic regression separately, less work has been done in the literature on full inference of a joint model incorporating both clustering and risk score prediction for models at the scale required here (in excess of 27 million patient-response observations). This will include exploring extension of many recent so-called "big data" Monte Carlo methods, including approaches that achieve convergence to the correct Bayesian posterior whilst only requiring access to subsamples of the data on any given iteration of the algorithm.This initial milestone will enable both improved risk score prediction and insight into which population cohorts experience homogeneous covariate effects for emergency admission. It is of particular interest to the NHS to compare these to the previously expertly elicited clusters. In this sense both clustering and risk scoring aspects of the first stage of work are still fully interpretable, potentially providing not only accurate risk scoring but also diagnostic assistance to GPs.A second question is how much better risk scoring can be made if full interpretability is sacrificed (so-called black box modelling). The work will move on to extend the joint inference task to more modern statistical machine learning methods such as gradient boosting machines, whilst retaining the goal of estimating patient cohorts, thereby retaining some modicum of interpretability whilst leveraging the latest advances in machine learning. The flexibility of these modern methods means that careful development of a model penalisation scheme will be required to ensure patient cohort discovery -- that is, for example penalising the number of rounds in gradient boosting. This will mean that within each cohort accuracy can be improved whilst retaining cohort estimation, rather than simply turning the entire modelling exercise into a black box. In particular, there will be computational statistics challenges to overcome in the scale of the model, since fully Bayesian approaches to more complex machine learning models is still an area of very active research.
这项博士工作将加入与NHS苏格兰正在进行的合作,寻求预测急诊入院的风险,以帮助医疗保健专业人员优先考虑具有复杂护理需求的患者,最终目的是减少急诊住院率。这既有利于改善患者的治疗效果,也有利于节省医疗服务的潜在成本。有一个人口水平的数据集,提供纵向诊断和患者水平的数据,为整个苏格兰人口,使用了国民保健服务医院(约360万人)。到目前为止,以前的工作只涉及一系列逻辑回归模型,这些模型是基于人群中熟练引出的患者队列。这些模型使用一个简单的未学习的规则进行组合。因此,本博士将寻求开发新的统计方法,其灵感来自于明确关注解决上述应用问题。早期工作将研究现有无监督学习(或聚类)方法的效果,以在没有专家干预的情况下从数据中学习患者队列。这将迅速发展并扩展到一个完全有原则的贝叶斯分析,其中需要开发新的方法来实现患者队列和逻辑回归模型参数的联合推断,属于所谓的专家建模混合领域。实现这一目标可能需要扩展现有的计算统计方法:尽管目前存在基于模型的聚类和逻辑回归方法,但在文献中,在本文所需的规模(超过2700万例患者反应观察)下,对结合聚类和风险评分预测的联合模型进行全面推断的工作较少。这将包括探索许多最近所谓的“大数据”蒙特卡罗方法的扩展,包括实现收敛到正确的贝叶斯后验的方法,同时只需要访问任何给定算法迭代的数据子样本。这一最初的里程碑将实现改进的风险评分预测和洞察哪些人群队列经历了急诊入院的同质协变量效应。NHS特别感兴趣的是将这些与以前专业引发的集群进行比较。从这个意义上说,第一阶段工作的聚类和风险评分方面仍然是完全可解释的,不仅可能提供准确的风险评分,而且还可能为GP提供诊断帮助。第二个问题是,如果牺牲完全可解释性(所谓的黑盒建模),风险评分可以提高多少。这项工作将继续将联合推理任务扩展到更现代的统计机器学习方法,如梯度提升机器,同时保留估计患者队列的目标,从而保留一些可解释性,同时利用机器学习的最新进展。这些现代方法的灵活性意味着需要仔细开发一个模型惩罚方案,以确保患者队列发现-也就是说,例如惩罚梯度增强中的轮数。这意味着在每个队列中,可以提高准确性,同时保留队列估计,而不是简单地将整个建模工作变成一个黑盒子。特别是,在模型的规模方面,将有计算统计学的挑战需要克服,因为更复杂的机器学习模型的完全贝叶斯方法仍然是一个非常活跃的研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
  • 批准号:
    DP230101671
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886777
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了