Molecular Role of 16S Ribosomal RNA in Translocation
16S 核糖体 RNA 在易位中的分子作用
基本信息
- 批准号:6618529
- 负责人:
- 金额:$ 5.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:Escherichia coli bacterial RNA bacterial genetics cell component structure /function chemical structure function crosslink genetic translation intermolecular interaction messenger RNA model design /development molecular dynamics nucleic acid sequence nucleic acid structure nucleotide analog physical model protein biosynthesis ribosomal RNA ribosomes structural biology transfer RNA
项目摘要
DESCRIPTION (provided by applicant): Protein synthesis is a fundamental process
in all living organisms. Ribosomes are the ribonucleoprotein complexes
responsible for protein synthesis. Recent atomic resolution structures of the
large and small ribosomal subunits provide a unique opportunity to understand
the mechanism by which ribosomes perform the complex task of protein synthesis.
One of the important steps in the elongation cycle of protein synthesis is the
iterative movement of the tRNA-mRNA complex, a process called translocation. In
Escherichia coli, elongation factor G (EF-G) catalyzes translocation. The
mechanism of EF-G-dependent translocation is poorly understood. The long-term
goal of my laboratory is to elucidate the molecular basis of translocation.
Several lines of studies indicate that the ribosomal RNAs (rRNAs) may play a
functional role during translocation. We recently developed a novel
modification-interference approach that will permit us to examine the role of
16S rRNA in translocation. The method uses a highly efficient site-specific
cross-link between P site bound tRNA and 16S rRNA to select ribosomes that are
active in translocation. We will use a combinatorial approach for identifying
bases, non-bridging phosphate oxygens, and ribose 2'-hydroxyl groups within 16S
rRNA that are critical for translocation. This study will provide information
about the dynamics of ribosome structure that cannot be easily acquired by
X-ray crystallography.
Ribosomes are the target for inactivation by several classes of antibiotics.
Antibiotics such as eiythromycin, spectionmycin, viomycin, thiostrepton, and
the aminoglycosides specifically inhibit translocation. Some of these
antibiotics prevent the 16S rRNA from undergoing structural changes that are
critical for translocation. Antibiotic-resistant strains of bacteria are on the
rise, causing a crisis in the management and treatment of these infections
throughout the world. Understanding the mechanism of translocation will provide
insights for developing more effective antibiotics that target the ribosome of
these drug-resistant strains of bacteria.
描述(由申请人提供):蛋白质合成是一个基本过程
在所有生物体中。核糖体是核糖核蛋白复合物
负责蛋白质合成。最近的原子分辨率结构的
大小核糖体亚基提供了一个独特的机会,
核糖体完成蛋白质合成这一复杂任务的机制。
蛋白质合成延长周期中的重要步骤之一是
tRNA-mRNA复合物的反复移动,这一过程称为易位。在
大肠杆菌,延伸因子G(EF-G)催化易位。的
EF-G依赖性易位的机制知之甚少。长期
我实验室的目标是阐明易位的分子基础。
几项研究表明,核糖体RNA(rRNA)可能发挥着重要作用,
在易位过程中的作用。我们最近开发了一种小说
修改干预的方法,这将使我们能够检查的作用,
16 S rRNA易位。该方法使用高效的特定于站点的
P位点结合的tRNA和16 S rRNA之间的交联,以选择
在易位中活跃。我们将使用一种组合方法来识别
碱基、非桥接磷酸氧和16 S内的核糖2 '-羟基
rRNA对于易位至关重要。这项研究将提供信息
关于核糖体结构的动力学,
X射线晶体学
核糖体是几类抗生素灭活的靶点。
抗生素如红霉素、壮观霉素、紫霉素、硫链丝菌素,和
氨基糖苷类特异性抑制易位。其中一些
抗生素阻止16 S rRNA发生结构变化,
对于易位至关重要。抗生素耐药菌株的细菌是在
上升,导致这些感染的管理和治疗危机
在全世界都有。了解易位的机制将提供
开发更有效的抗生素的见解,靶向核糖体
这些耐药菌株。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIMPSON JOSEPH其他文献
SIMPSON JOSEPH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIMPSON JOSEPH', 18)}}的其他基金
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10581388 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10207047 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10631100 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Mechanism of Protein Synthesis and Translational Control
蛋白质合成与翻译控制机制
- 批准号:
10414150 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Translational Control by the Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的翻译控制
- 批准号:
9199419 - 财政年份:2016
- 资助金额:
$ 5.26万 - 项目类别:
Interaction of Influenza A virus NS1 protein with PABP1 and eIF4G
甲型流感病毒 NS1 蛋白与 PABP1 和 eIF4G 的相互作用
- 批准号:
9243088 - 财政年份:2016
- 资助金额:
$ 5.26万 - 项目类别:
相似海外基金
Deciphering newly uncovered mechanisms of fluid regulation in bacterial RNA-protein networks
破译细菌 RNA-蛋白质网络中新发现的液体调节机制
- 批准号:
2349832 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Development of a Novel Class of Gram-Negative Antibiotics that Target Bacterial RNA
开发一类针对细菌 RNA 的新型革兰氏阴性抗生素
- 批准号:
10016075 - 财政年份:2019
- 资助金额:
$ 5.26万 - 项目类别:
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2019
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2018
- 资助金额:
$ 5.26万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of molecular pathogenesis in bacterial RNA-induced cytokine storm
阐明细菌 RNA 诱导的细胞因子风暴的分子发病机制
- 批准号:
17K10012 - 财政年份:2017
- 资助金额:
$ 5.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)