Excitatory Amino Acid Release in Ischemia
缺血时的兴奋性氨基酸释放
基本信息
- 批准号:6800564
- 负责人:
- 金额:$ 36.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:astrocytes brain disorder chemotherapy calmodulin caveolas cerebral ischemia /hypoxia chemoprevention dosage excitatory aminoacid glutamate transporter immunocytochemistry ion transport laboratory rat membrane channels membrane transport proteins neuropharmacology neuroprotectants neurotransmitter transport nonhuman therapy evaluation stroke therapy tamoxifen tissue /cell culture
项目摘要
DESCRIPTION (Adapted from applicant's abstract): Our major hypothesis for the
last funded period was that reversal of EAA transporters and activation of
Volume-Regulated Anion Channels (YRACs) are major sources of EAAs in rat
cerebral ischemia and that inhibition of these routes of release would be
neuroprotective. In support of the first part of this hypothesis, we found that
elevated extracellular [K+] induced EAA release due to both reversal of the EAA
transporter and activation of VRACs in primary asfrocyte cultures. In vivo,
microdialysis studies in a rat temporary global ischemia model established that
application via a microdialysis probe of dihydrokainaxe, an inhibitor of the
astrocyte-specific EAA transporter GLT-1, or DNDS an anion channel inhibitor,
led to potent suppression of EAA levels during the ischemic episode. If applied
together these compounds reduced EAA levels in ischemia by over 80 percent. To
check whether inhibition of VRACs is neuroprotective, we chose, on the basis of
its high blood-brain barrier permeability, the estrogen receptor
antagonist/agonist tamoxifen (TAM) that is also an efficient inhibitor of VRACs
in vitro. In the rat middle cerebral artery occlusion model (rMCAO), 5 mg/kg
TAM reduced infarction volume by up to 80 percent if applied just before the 2
hour ischemic episode or 3 h after initiation of ischemia. We propose to
continue these studies along two lines. One will be devoted to molecular
identification of VRACs and intracellular signalling events involved in the
volume-dependent release of EAAs in primary astrocyte cultures. Our hypotheses
for this part of the project are that more than one VRAC is involved in
volume-dependent amino acid release, one or more of these channels are
incorporated in calveolae signaling complexes and calmodulin and tyrosine
kinases are involved in their volume-dependent activation. The second line of
the study will be to explore the molecular mechanisms of TAM neuroprotection
and evaluation of its therapeutic window with different dosages and with
different durations of reversible middle cerebral artery occlusion. Our
hypothesis here is that TAM is highly neuroprotective in rMCAo because it has
multiple protective effects. These include inhibition of VRACs, suppression of
Ca24 about/calmodulin-dependent nitric oxide production, and/or antioxidant
action. We also cannot exclude that some portion of the protection may also be
mediated by brain estrogen receptors. This second part of the project will test
all these possibilities in animal studies.
Both aspects of the project will add new basic knowledge on VRACs, with the
potential for understanding their functions in the brain. The second half of
the project that deals with neuroprotection has direct potential clinical
implications, as TAM is known to be well tolerated in humans being widely used
for breast cancer treatment.
描述(改编自申请人摘要):我们对
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harold K Kimelberg其他文献
Harold K Kimelberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harold K Kimelberg', 18)}}的其他基金
MECHANISMS OF INCREASED EXCITATORY AMINOACID IN ISCHEMIA
缺血时兴奋性氨基酸增加的机制
- 批准号:
6187299 - 财政年份:1996
- 资助金额:
$ 36.68万 - 项目类别:
MECHANISMS OF INCREASED EXCITATORY AMINOACID IN ISCHEMIA
缺血时兴奋性氨基酸增加的机制
- 批准号:
2274527 - 财政年份:1996
- 资助金额:
$ 36.68万 - 项目类别:
MECHANISMS OF INCREASED EXCITATORY AMINOACID IN ISCHEMIA
缺血时兴奋性氨基酸增加的机制
- 批准号:
2892071 - 财政年份:1996
- 资助金额:
$ 36.68万 - 项目类别: