Quantifying global burden and contextual effects of synthetic genetic circuits in their bacterial chassis

量化细菌底盘中合成遗传电路的整体负担和背景影响

基本信息

  • 批准号:
    2262510
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Synthetic biology uses standardised biological parts, formed from engineered DNA sequences, which can be combined to form devices and systems which perform useful functions. The combination of parts necessary for a given function is called a synthetic genetic circuit, and when a circuit is placed inside a host bacterium the circuit DNA is expressed by the cellular machinery of the host. Potential uses for synthetic biology include applications in agriculture, healthcare, environmental remediation, biosensing and sustainable manufacturing.However, the expression of synthetic circuit DNA uses a portion of the limited resources available to the host cell for cell growth and reproduction. Therefore, circuit containing cells typically have a lower growth rate and organism fitness than their circuit free counterparts. We refer to this general slow-down of cellular activity due to resource competition as a global burden on the cell. The expression or maintenance of the circuit can also inhibit the natural function of specific genes in the host genome, which can be detrimental to organism fitness, but can also feedback and impair the circuit function itself. Therefore, the general resource competition from the parasitic nature of the circuit, and context dependent interactions between the circuit and its host can reduce both the performance quality of the circuit and the fitness of the host. These pose major problems for engineering synthetic circuits, since in addition to reducing yields, the reduced organism fitness creates a selective pressure against the circuit containing cells, meaning they are likely to be outcompeted by any cells which mutate to lose the circuit and hence reduce the burden they experience. In general, this means useful functions performed by circuits are very quickly lost from a population of cells.In this project, we aim to precisely quantify the global burden and the contextual effects arising from a synthetic circuit, and to characterise any loss in circuit performance and evolutionary robustness due to these effects. To achieve this, we will use time-lapse microscopy to image live cells growing in a high-throughput microfluidic chamber where cells will grow in a uniform environment, with single cell resolution. By inducing a controlled circuit loss, we will be able to precisely measure the difference in growth rates between genetically identical cells containing and free from the circuit. Furthermore, through long term observation of mutations in the circuit and host genome, we aim to gain insight into how cells evolve to co-exist with a synthetic circuit. We aim to achieve this using a custom built, automated growth chamber which controls the optical density of the bacterial culture. We believe this methodology will allow us to observe many more generations per unit time over the length of the experiment than traditional long-term evolution experiments. Through regular DNA sequencing of samples from these evolution experiments, we will be able to quantify the rate and manner by which circuit function is lost.Lastly, we aim to introduce a synthetic circuit into collections of bacterial strains, where each strain tracks the activity of a different gene in the bacterial genome. By inducing a controlled circuit loss from these strains, and observing the activity of each gene in the genome both with and without the circuit, we hope to deduce whether and how the operation of the synthetic circuit inhibits the expression of others genes of the organism. This project most closely aligns with the Synthetic Biology EPSRC research area, and a key outcome of this project could be to provide quantitative, metrological benchmarks and new methods for the measurement of burden in bacterial cells. The project also aligns with the Sensors and Instrumentation research area, due to the focus on developing new and precise methods for measuring burden and contextual effects caused by synthetic genetic circuits.
合成生物学使用标准化的生物部件,由工程DNA序列形成,这些部件可以组合在一起形成执行有用功能的设备和系统。特定功能所必需的部分的组合被称为合成遗传回路,当回路被放置在宿主细菌内时,回路DNA由宿主的细胞器表达。合成生物学的潜在用途包括农业、医疗保健、环境修复、生物传感和可持续制造。然而,合成电路DNA的表达使用了宿主细胞可用于细胞生长和繁殖的有限资源的一部分。因此,与无电路的细胞相比,含有电路的细胞通常具有较低的生长速度和生物体适应性。我们将这种由于资源竞争而导致的细胞活动普遍减慢称为对细胞的全球负担。回路的表达或维持也会抑制宿主基因组中特定基因的自然功能,这可能不利于生物体的健康,但也会反馈和损害回路功能本身。因此,来自电路的寄生性质的一般资源竞争以及电路与其主机之间的上下文相关的交互会降低电路的性能质量和主机的适合性。这些都给工程合成电路带来了重大问题,因为除了降低产量外,降低的有机体适应性还会对包含细胞的电路产生选择压力,这意味着它们很可能被任何突变的细胞击败,从而失去电路,从而减轻它们所经历的负担。一般来说,这意味着电路执行的有用功能很快就会从一群细胞中消失。在这个项目中,我们的目标是精确地量化合成电路产生的全局负担和上下文影响,并表征由于这些影响而造成的电路性能和进化健壮性的任何损失。为了实现这一点,我们将使用延时显微镜来成像在高通量微流体室中生长的活细胞,在那里细胞将在统一的环境中生长,并具有单个细胞的分辨率。通过诱导受控的电路损耗,我们将能够精确地测量含有和不含电路的遗传相同细胞之间的生长速度的差异。此外,通过对电路和宿主基因组中突变的长期观察,我们的目标是了解细胞是如何进化成与合成电路共存的。我们的目标是使用定制的自动生长室来控制细菌培养的光密度来实现这一点。我们相信,与传统的长期进化实验相比,这种方法将允许我们在整个实验过程中观察到更多的每单位时间世代。通过对这些进化实验中样本的定期DNA测序,我们将能够量化电路功能丧失的速度和方式。最后,我们的目标是在细菌菌株集合中引入合成电路,在其中每个菌株跟踪细菌基因组中不同基因的活性。通过诱导这些菌株的受控回路损耗,并观察有回路和不有回路的基因组中每个基因的活动,我们希望推断合成回路的操作是否以及如何抑制生物体其他基因的表达。该项目与合成生物学EPSRC研究领域最紧密地结合在一起,该项目的一个关键成果可能是为测量细菌细胞中的负荷提供定量、计量学基准和新方法。该项目还与传感器和仪器研究领域保持一致,因为该项目的重点是开发新的精确方法来测量合成遗传电路造成的负担和背景影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

中大尺度原子、分子团簇电子和几何结构的理论研究
  • 批准号:
    21073196
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
核子自旋结构与高能反应过程的自旋不对称
  • 批准号:
    10975092
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
非线性抛物双曲耦合方程组及其吸引子
  • 批准号:
    10571024
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integrative Approaches for Cancer Survivorship: A Multi-Site Feasibility and Acceptability Study
癌症生存的综合方法:多中心可行性和可接受性研究
  • 批准号:
    10729453
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
  • 批准号:
    10649741
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
8th International RASopathies Symposium: Expanding Research and Care Practice through Global Collaboration and Advocacy
第八届国际 RASopathies 研讨会:通过全球合作和宣传扩大研究和护理实践
  • 批准号:
    10683644
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Influence of swallowing impairment on burden among caregivers of persons with Alzheimer's Disease and related dementias
吞咽障碍对阿尔茨海默病和相关痴呆症患者护理人员负担的影响
  • 批准号:
    10661428
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inflammatory Bowel Disease in 2035: A National Study of the Canadian Gastro-Intestinal Epidemiology Consortium (CanGIEC)
2035 年炎症性肠病:加拿大胃肠流行病学联盟 (CanGIEC) 的一项全国研究
  • 批准号:
    494255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Redefining Approaches to Mitigate Global Snakebite Burden in a Changing World: A Zoonotic Perspective
在不断变化的世界中重新定义减轻全球蛇咬伤负担的方法:人畜共患病的视角
  • 批准号:
    2887276
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Rewiring networks for a pathogenic lifestyle
重新连接网络以适应致病的生活方式
  • 批准号:
    10893669
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
  • 批准号:
    10736523
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Clinical and Nutrigenetic Assessment of Zinc in Patients with Prediabetes
糖尿病前期患者锌的临床和营养遗传学评估
  • 批准号:
    10713103
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了