The geometry and combinatorics of compactified universal Jacobians
紧化通用雅可比行列式的几何和组合数学
基本信息
- 批准号:2271921
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will study the geometry of the compactification of the universal Jacobian, the moduli space that parametrises pairs (C,L) where C is a smooth algebraic curve of given genus and L is a line bundle of some fixed degree on C. A classical modular compactification of the moduli space of curves is given in terms of stable curves. There are several different modular compactifications that admit a map to the moduli space of stable curves. The set of all such compactifications modulo isomorphisms has been recently studied in a series of works by Kass and Pagani. We will address two natural (and independent) questions.1) Recent work by Migliorini-Shende-Viviani shows that the cohomology of two compactified Jacobians of the same stable curve are isomorphic as vector spaces. Here we want to ask if the same is true for two compactified universal Jacobians (over the same moduli space). This project will first require to understand the details of the proof of Migliorini-Shende-Viviani's result, which requires developing some understanding of intersection cohomology and of the classical decomposition theorem by Beilinson-Bernstein-Deligne.2) How many non-isomorphic compactified Jacobians exist for a fixed genus? By the work of Kass-Pagani this question can be reformulated as the combinatorial problem of counting the number of chambers of a certain hyperplane arrangement on a real torus, modulo the action of a certain group. The theory to count the chambers of a hyperplane arrangement in a vector space is classical and due to Zavlasky, and recent results extend that theory to the case of arrangements on a torus.
我们将研究通用雅可比行列式的紧化几何,即参数化对 (C,L) 的模空间,其中 C 是给定亏格的光滑代数曲线,L 是 C 上某个固定次数的线丛。曲线模空间的经典模紧化是根据稳定曲线给出的。有几种不同的模紧化允许映射到稳定曲线的模空间。 Kass 和 Pagani 最近在一系列作品中研究了所有此类紧化模同构的集合。我们将解决两个自然(且独立)的问题。1)Migliorini-Shende-Viviani 最近的工作表明,同一稳定曲线的两个紧致雅可比行列式的上同调与向量空间同构。在这里我们想问对于两个紧致的通用雅可比行列式(在相同的模空间上)是否也是如此。该项目首先需要了解 Migliorini-Shende-Viviani 结果证明的细节,这需要对交上同调和 Beilinson-Bernstein-Deligne 的经典分解定理有一定的了解。2) 对于一个固定的属,存在多少个非同构紧雅可比行列式?通过卡斯-帕加尼的工作,这个问题可以重新表述为计算真实环面上某个超平面排列的室数的组合问题,以某个群的作用为模。计算向量空间中超平面排列的腔室的理论是经典的,由扎夫拉斯基提出,最近的结果将该理论扩展到环面排列的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




