Geometric and Topological Data Analysis of Enzyme Kinetics
酶动力学的几何和拓扑数据分析
基本信息
- 批准号:2272639
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research we plan to conduct in this research project is concerned with Extracellular Signal Regulated Kinase (ERK) kinetics. Mutations affecting ERK are associated with diseases such as human cancer and developmental defects, making them of significant interest in contemporary biological research. While the effects of such mutations have been observed in vivo, their effects on the mechanism of ERK activation, i.e. quantitive changes to mathematical models describing such phenomena, have remained unknown so far. The aim is to derive novel techniques for quantifying the effect genetic perturbations, such as mutations, have on ERK kinetics.To this end, we will investigate families of ODE models based on such kinetics and derive parameter inferences for various mutants. In this light, we are interested in model reduction techniques and characterising their utility and practical identifiability in the context of real-world data through tools of algebra, geometry and topology. The relative strength of the various models arising can then be tested by means of model comparison. The objective is to then go on to study the shape of distributions resulting from Bayesian parameter inferences, using methods of Topological Data Analysis (TDA), in order to distinguish between various genetic perturbations at the level of cells. We identify three directions of research we aim to investigate in order to achieve this goal: The algebra of Quasi-Steady-State Approximations, geometric characterisations of their goodness of approximation, and theoretical results from TDA guaranteeing recoverability of relevant topological information. The proposed directions of research are motivated by successful results obtained from analysing one model assumption during my MSC thesis, which has subsequently been written into a manuscript been submitted and undergoing revision, here we plan to analyse a family in a more mathematically principles manner. Moreover, we will look into investigating what conclusions can be made at the level of genetic perturbations in cells by studying the shape of parameter inferences through running simulations involving synthetic data. To the best of our knowledge, this would constitute a novel achievement. Furthermore, we aim to generalise the inference pipeline used in the MSc thesis to more complex models of ERK mechanisms involving a larger number of sites.On the more theoretical side, open questions are to strengthen and extend existing results on algebraic and geometric characterisations of model reductions, such as Quasi-Steady-State Approximation, aiming to understand better the accuracy of these approximations. Moreover, it would be worthwhile to investigate how the discriminative power of tools of Topological Data Analysis compares between different models.Possible collaborators are the Shvartsman Lab in Princeton, who motivated the MSc project mentioned above and supplied the measurement data.This project falls within the EPSRC Research areas, Algebra, Geometry & Topology, Statistics and Applied Probability and Mathematical biology.
我们计划在本研究项目中进行的研究涉及细胞外信号调节激酶(ERK)动力学。影响ERK的突变与人类癌症和发育缺陷等疾病有关,使其在当代生物学研究中具有重要意义。虽然已经在体内观察到这种突变的影响,但它们对ERK激活机制的影响,即描述这种现象的数学模型的定量变化,迄今为止仍然未知。我们的目标是获得新的技术,量化的影响遗传扰动,如突变,对ERK kinetics.To为此,我们将调查家庭的ODE模型的基础上,这样的动力学和推导参数推断各种突变。在这方面,我们感兴趣的模型简化技术和表征其实用性和实际的可识别性的背景下,现实世界的数据,通过代数,几何和拓扑的工具。然后,可以通过模型比较来检验所产生的各种模型的相对强度。我们的目标是,然后继续研究贝叶斯参数推断的分布形状,使用拓扑数据分析(TDA)的方法,以区分各种遗传扰动的细胞水平。我们确定了三个研究方向,我们的目标是调查,以实现这一目标:准稳态近似的代数,几何表征他们的近似的善良,并从TDA保证恢复相关的拓扑信息的理论结果。所提出的研究方向的动机是成功的结果,从分析一个模型的假设在我的MSC论文,随后已被写入手稿已提交并进行修订,在这里,我们计划分析一个家庭在更多的数学原理的方式。此外,我们将通过运行涉及合成数据的模拟来研究参数推断的形状,研究在细胞遗传扰动水平上可以得出什么结论。据我们所知,这将是一项新的成就。此外,我们的目标是将硕士论文中使用的推理流水线推广到涉及大量sites.On更多理论方面的ERK机制的更复杂模型,开放问题是加强和扩展现有的结果代数和几何特征的模型简化,如准稳态近似,旨在更好地理解这些近似的准确性。此外,这将是值得调查的工具的区分能力的拓扑数据分析比较不同的模型。可能的合作者是Shvartsman实验室在普林斯顿大学,谁激发了上述硕士项目,并提供了测量数据。该项目属于EPSRC研究领域,代数,几何与拓扑,统计和应用概率和数学生物学福尔斯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
- 批准号:
23H01915 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
- 批准号:
2318170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
- 批准号:
2301361 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310355 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant