Methodologies and simulation tools to support Operations and Maintenance (O&M) strategies and lifetime reliability assessment of Offshore Renewable En
支持运营和维护的方法和模拟工具(O
基本信息
- 批准号:2275010
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last few decades, global offshore wind technology has rapidly evolved from fixed-bottomsupport structures in shallow waters (below 60 meters) to floating substructures, as water depthincreases (expected up to 1,000 meters). Turbine designs have grown from small power capacity of0.45 megawatts (MW) in 1991, up to today's giant Siemens Gamesa-14MW turbine that will becommercially available in 2024. These advances in offshore renewable technology will continue todecrease its costs, while also contributing to meeting the growing demand of energy.In June 2019, in line with the Paris Agreement, the UK's Climate Change Act 2008 set out the roadmapto net-zero carbon emissions target by 2050. At the end of 2019, the UK's offshore wind electricityproduction reached 32TWh, which accounted for 10% of its total mix energy production. Furthermore,with around 40 offshore wind farms and over 2,200 turbines operating for a total installed capacity of9.7 gigawatts (GW), and 4.4GW under construction or with a final investment decision confirmed [1],the UK is the world leader in the offshore wind sector. Globally, there are over 27GW installed in thefixed-bottom technology and 82MW with floating offshore wind turbines.Offshore renewable technologies will play a key role in the world's future energy transition. In the nextten years, there are development plans and market opportunities for offshore wind projects in Europe,Asia-Pacific and the US. However, offshore wind energy deployment is still facing big challenges, suchas installation logistics, large component replacement strategy, and operations and maintenance (O&M)costs, all of them having a significant impact on the levelised cost of energy (LCoE). For instance,overall O&M costs make up 34% and 31.3% of the total LCoE for offshore fixed-bottom and floatingwind technologies, respectively [2]. Moreover, the operational expenditure (OpEx) of an offshore windfarm is variable throughout its lifetime. Technical and geographical factors affect the OpEx, such as thedistance from the wind farm to the onshore facilities, the metocean conditions, and the unexpectedfailures of critical components, among others.Therefore, there is a high interest in increasing accuracy and reducing uncertainty in OpEx estimatesfor both development projects and existing assets. For instance, there are collaborative works betweenacademia, research institutions, industry, and governmental entities to develop advanced technologicalsolutions and tools to drive the reduction of O&M costs and to improve the reliability and efficiency ofORE systems. Such is the case of ROMEO [3] and DTOcean Plus [4] projects.In fact, there are several analytic models and tools to calculate the installation and O&M costs as wellas to estimate the annual availability of ORE projects over the designed lifetime [5][6]. However, furtherresearch is required to improve those O&M models to move from basic preventive to condition-basedmaintenance (CBM), as discussed below.
在过去的几十年里,随着水深的增加(预计可达1000米),全球海上风电技术已经从浅水区(60米以下)的固定底部支撑结构迅速发展为浮动子结构。涡轮机的设计已经从1991年的0.45兆瓦(MW)的小功率发展到今天的西门子gamera - 14mw涡轮机,该涡轮机将于2024年投入商用。海上可再生能源技术的这些进步将继续降低其成本,同时也有助于满足日益增长的能源需求。2019年6月,根据《巴黎协定》,英国《2008年气候变化法案》制定了到2050年实现净零碳排放目标的路线图。截至2019年底,英国海上风电产量达到32TWh,占其混合能源总产量的10%。此外,英国拥有约40个海上风电场和2200多台涡轮机,总装机容量为9.7千兆瓦(GW), 4.4千兆瓦正在建设或最终投资决定已确定,是海上风电领域的世界领导者。在全球范围内,固定底部技术安装了超过27GW,浮动海上风力涡轮机安装了82MW。海上可再生能源技术将在世界未来的能源转型中发挥关键作用。未来几年,欧洲、亚太和美国的海上风电项目将有发展计划和市场机会。然而,海上风能的部署仍然面临着巨大的挑战,例如安装物流、大型组件更换策略、运营和维护(O&M)成本,所有这些都对能源平降成本(LCoE)产生重大影响。例如,海上固定底式和浮动式风电技术的总体运维成本分别占总成本的34%和31.3%。此外,海上风电场的运营支出(OpEx)在其整个生命周期中是可变的。技术和地理因素会影响运营成本,例如风电场到陆上设施的距离、海洋环境、关键部件的意外故障等。因此,在开发项目和现有资产的运营成本估算中,提高准确性和减少不确定性是非常重要的。例如,学术界、研究机构、工业界和政府机构之间开展合作,开发先进的技术解决方案和工具,以降低运维成本,提高fore系统的可靠性和效率。ROMEO[3]和dtoocean Plus[4]项目就是这样的情况。事实上,有几种分析模型和工具可以计算安装和运维成本,以及估计ORE项目在设计生命周期内的年可用性。然而,需要进一步的研究来改进这些运维模型,从基本预防转向基于状态的维护(CBM),如下所述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
- 批准号:41775087
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
微扰量子色动力学方法及在强子对撞机的应用和暗物质的研究
- 批准号:10975004
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
变压吸附中真空脱附过程的传质传热规律研究
- 批准号:20576028
- 批准年份:2005
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Simulation Tools for the design of safe and sustainable Lubricants
用于设计安全和可持续润滑剂的仿真工具
- 批准号:
10101483 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
SiToLub - Simulation Tools For The Design Of Safe And Sustainable Lubricants
SiToLub - 用于设计安全和可持续润滑剂的仿真工具
- 批准号:
10107545 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
STARS: Sharing Tools and Artifacts for Reproducible Simulation
STARS:共享可重复模拟的工具和工件
- 批准号:
MR/Z503915/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
SimPol: Simulation tools for design and application of renewable polymers
SimPol:可再生聚合物设计和应用的仿真工具
- 批准号:
10054921 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Launchpad
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Application of New Tools for Probing the Roles of Sphingolipids and Cholesterol in Influenza Virus Infection
应用新工具探索鞘脂和胆固醇在流感病毒感染中的作用
- 批准号:
10678459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
- 批准号:
10715891 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
-- - 项目类别: