Advancing bacterial 3D printing for the production of next-generation bio-materials
推进细菌 3D 打印以生产下一代生物材料
基本信息
- 批准号:2279913
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural and engineered bacteria possess extraordinary biosynthetic capabilities. These can serve almost any application imaginable: from functionalised bacterial cellulose patches for antimicrobial wound dressing to bacterial self-healing concrete or the use of bacteria to make nacre-inspired composite materials. The ability to harness such great manufacturing potential into customised designs with defined three-dimensional shape and composition remains, however, largely elusive. Current 3D bacterial printing approaches rely on the use of scaffolds or conventional layer-by-layer additive manufacturing strategies to shape their designs, often resulting in unsophisticated structures with restricted geometries and monotonous physico-chemical and mechanical properties. In contrast, one-body yet heterogeneous composite materials with seamless transitions between disparate properties (functionally graded composite materials) have long been a holy grail for designers and engineers. The project supervisors have devised and are currently developing a novel enabling platform for the 3D printing of new classes of bio-materials with radically enhanced properties and functionalities. This new platform technology employs a series of CAD-programmed light cues to activate gene expression of engineered cells "at will" at specific xyz coordinates, which allows for seamless changes in the spatial composition of the composite bio-material. Engineered cells are conveniently embedded into a translucent, bio-compatible matrix that provides additional capabilities and that can be easily removed once the printing process is finished. The final success of this approach will depend not only on overcoming the optical challenges (i.e. diffraction, dispersion, etc.) posed by the use of light but also on our ability to achieve exquisite control over a number of biology-related aspects of the project. This project will build on ongoing efforts to bridge the gap between synthetic biology and 3D printing technology and will focus on further developing the necessary biological tools for the effective manufacturing of bio-materials in 3D. In the initial phases of the project, less-sophisticated, simple proof-of-concept structures will be generated. This will help identify and delimit expected and also unexpected challenges for the production of more complex composite materials. Next steps will include, but not be limited to, optimisation of biosynthetic pathways in the working chassis; finding appropriate illumination regimes to improve printing efficiencies; incorporation of biomolecular feedback control into genetic designs (e.g. incorporation of positive feedback loops could help improve printing efficiency); development of efficient secretion systems and alternative "secretion" strategies (e.g. enzyme display for extracellular biosynthesis of one or more constituents of the composite material); bio-material engineering (e.g. through incorporation of bacterial amyloids) and functionalisation (e.g. silver nanoparticles); integration of mathematically-modelled light-driven gene expression systems into 3D printing software for truly computer-guided bio-fabrication; etc. Finally, resultant next-generation 3D bio-materials will be analysed for their physico-chemical and mechanical behaviour and compared with existing bio-materials.
天然细菌和工程细菌具有非凡的生物合成能力。这些材料几乎可以用于任何可以想象到的应用:从用于抗菌伤口敷料的功能化细菌纤维素贴片,到细菌自愈合混凝土,或者使用细菌来制造珍珠层启发的复合材料。然而,将如此巨大的制造潜力转化为具有定义的三维形状和构成的定制设计的能力,在很大程度上仍然难以捉摸。目前的3D细菌打印方法依赖于使用支架或传统的逐层添加剂制造策略来塑造其设计,往往导致结构简单,几何形状受限,物理化学和机械性能单调。相比之下,能够在不同性能之间无缝转换的一体但不同种类的复合材料(功能梯度复合材料)长期以来一直是设计师和工程师的圣杯。项目主管已经设计并目前正在开发一种新型的3D打印平台,用于从根本上增强特性和功能的新型生物材料的3D打印。这项新的平台技术采用了一系列由CAD编程的光信号来激活工程细胞在特定xyz坐标下的基因表达,这使得复合生物材料的空间组成可以无缝变化。工程细胞可以方便地嵌入到半透明、生物兼容的基质中,这种基质提供了额外的功能,一旦打印过程完成,就可以很容易地移除。这种方法的最终成功不仅取决于克服光学挑战(即衍射、色散等)。光的使用不仅取决于我们的能力,而且还取决于我们实现对一些与生物学相关的方面的精细控制的项目。该项目将建立在正在努力弥合合成生物学和3D打印技术之间差距的基础上,并将重点放在进一步开发必要的生物工具,以有效地制造3D生物材料。在项目的初始阶段,将生成不太复杂、简单的概念验证结构。这将有助于确定和界定生产更复杂复合材料的预期和意想不到的挑战。下一步将包括但不限于,优化工作底盘中的生物合成途径;找到适当的光照制度以提高打印效率;将生物分子反馈控制纳入基因设计(例如,纳入正反馈环可以帮助提高打印效率);开发高效的分泌系统和替代的“分泌”策略(例如,用于复合材料的一种或多种成分的细胞外生物合成的酶展示);生物材料工程(例如,通过掺入细菌淀粉样蛋白)和功能化(例如,银纳米颗粒);将数学建模的光驱动基因表达系统集成到3D打印软件中,实现真正的计算机引导生物制造;等等。最后,将分析得到的新一代3D生物材料的物理化学和机械行为,并与现有的生物材料进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
中国棉铃虫核多角体病毒基因组库和分子进化
- 批准号:30540076
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
细菌脂蛋白(BLP)诱导LPS交叉耐受的分子机理研究
- 批准号:30471791
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
3D-bioprinting of sustained- and phased-release antibiotic and probiotic scaffolds to treat bacterial vaginosis
持续和分阶段释放抗生素和益生菌支架的 3D 生物打印用于治疗细菌性阴道病
- 批准号:
10420527 - 财政年份:2022
- 资助金额:
-- - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10609156 - 财政年份:2022
- 资助金额:
-- - 项目类别:
3D-bioprinting of sustained- and phased-release antibiotic and probiotic scaffolds to treat bacterial vaginosis
持续和分阶段释放抗生素和益生菌支架的 3D 生物打印用于治疗细菌性阴道病
- 批准号:
10580042 - 财政年份:2022
- 资助金额:
-- - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10488180 - 财政年份:2021
- 资助金额:
-- - 项目类别:
3D Printed Silicon Nitride Porous PEEK Composite Spinal Cages for Anti-Infection
3D 打印氮化硅多孔 PEEK 复合脊柱笼用于抗感染
- 批准号:
10819309 - 财政年份:2021
- 资助金额:
-- - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10705910 - 财政年份:2021
- 资助金额:
-- - 项目类别:
3D Printed Silicon Nitride Porous PEEK Composite Spinal Cages for Anti-Infection
3D 打印氮化硅多孔 PEEK 复合脊柱笼用于抗感染
- 批准号:
10323105 - 财政年份:2021
- 资助金额:
-- - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10223815 - 财政年份:2021
- 资助金额:
-- - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10649625 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Point-of-care detection of TB and NTM pathogens with Fluorescent Deoxyribozyme Sensors and 3D-printed, battery powered device.
使用荧光脱氧核酶传感器和 3D 打印电池供电设备对 TB 和 NTM 病原体进行即时检测。
- 批准号:
9889371 - 财政年份:2020
- 资助金额:
-- - 项目类别: