The Application of Liquid Marbles in the Removal of Pollutants and Contaminants from the Environment and Within Industrial Processes

液体大理石在去除环境和工业过程中的污染物和污染物中的应用

基本信息

  • 批准号:
    2281130
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This doctoral research will focus on liquid marbles and more specifically the way in which the particles coating the droplet dictate its abilities and size. It will try and answer the question; how can liquid marbles be used to remove pollutants from liquids? With the end objective being the formation of a liquid marble capable of removing plastic particles from water and. Several aims will be used, the first is how the morphology of the particles coating the droplet impacts the maximum marble size. Secondly, how do the particles used alter the rate at which vapour leaves the liquid marble. Both need to be answered before the final design of a plastic removal liquid marble can be achieved.Plastic pollution is prevalent in all of the world's oceans and the use of filtration to remove nano particles is not possible. Therefore, a method to tackle this issue is becoming more necessary - liquid marbles could do this. The phenomena of liquid marbles have generated much interest in the past 20 years and are described as a completely non-wetting soft solid, with reduced adhesion to a solid surface. This occurs upon addition of hydrophobic particles which coat the liquid droplet, preventing contact between the internal liquid and the external surface. Numerous combinations of powders and liquids is possible, allowing for use in different environments.I will be breaking this project into several areas. My preliminary research will examine how the critical size of a water liquid marble changes with different coatings. The existing literature on liquid marbles looks at a size range of 5-20uL with few instances of larger marbles, 1000uL, being formed. Little description about this relationship exists, with current literature focusing on liquid marbles as miniaturised reactors. It has been shown that the size and structure of particles have a key role in the lifetime of a liquid marble, but not on maximum marble size. Using a liquid marble with a large volume will allow for the capture of more plastic, meaning removal of the marble from the process will be less frequent. The second aim looks at the rate of vapour loss from the marble and its dependence on the particle. This is important for two reasons. Firstly, if a marble evaporates too quickly it will not retain its size, therefore, less pollutants are extracted. Secondly, liquid marbles containing an aqueous alcohol solution can self-propel on water due to the Marangoni effect, caused by a surface tension gradient between the two fluids. Harnessing this motion will be useful in positioning droplets quickly. The arrangement of the particles around the liquid will change based on the particles used, this means how closely packed the particles will differ, larger gaps between them should mean a higher evaporation rate. Understanding this behaviour will allow for management of vapour loss. Moreover, it is possible to coat the droplet in two particle types, coating in this manner could add directionality and control of the marbles.I will then look into the mechanism of microplastic capture. The main driving force behind this project is the way in which microplastics move from water to oil when the two are in contact. This allows for the separation of plastic from water without requiring excessive energy input. The challenge lies in being able to easily remove the oil-plastic solution and is where liquid marbles will be beneficial. This section will be the most time intensive as lots of factors are to be considered. With the main question, is it better to form the marble before or after plastic uptake? The best type of liquid for plastic removal will be selected and the types of plastics to remove; it may be beneficial to target the most abundant. Once identified it will be easy to select the particles to coat with from previous investigations. The remaining factor that needs to be considered is then how the coating will hinder the movement of plastic into the marble.
这项博士研究将集中在液体大理石,更具体地说,在其中的颗粒涂层液滴决定其能力和大小的方式。它将尝试回答这个问题;如何使用液体大理石来去除液体中的污染物?最终目的是形成能够从水中去除塑料颗粒的液体大理石。将使用几个目标,第一个目标是包覆液滴的颗粒的形态如何影响最大大理石尺寸。其次,所用的粒子如何改变蒸汽离开液体大理石的速度。这两个问题都需要得到解决,才能实现塑料去除液体大理石的最终设计。塑料污染普遍存在于世界所有的海洋中,使用过滤来去除纳米颗粒是不可能的。因此,解决这个问题的方法变得越来越必要-液体弹珠可以做到这一点。在过去的20年里,液体大理石的现象引起了人们的极大兴趣,并被描述为一种完全不润湿的软固体,与固体表面的粘附力降低。这发生在添加涂覆液滴的疏水颗粒时,从而防止内部液体与外表面之间的接触。粉末和液体的多种组合都是可能的,可以在不同的环境中使用。我将把这个项目分成几个领域。我的初步研究将研究水液体大理石的临界尺寸如何随着不同的涂层而变化。关于液体弹珠的现有文献着眼于5- 20 uL的尺寸范围,很少有形成1000 uL的较大弹珠的情况。关于这种关系的描述很少,目前的文献集中在液体大理石作为反应堆。它已被证明,颗粒的大小和结构有一个关键的作用,在寿命的液体大理石,但不是最大大理石尺寸。使用大体积的液体大理石将允许捕获更多的塑料,这意味着从过程中移除大理石的频率将降低。第二个目标是研究大理石的蒸汽损失率及其对颗粒的依赖性。这一点很重要,原因有二。首先,如果大理石蒸发得太快,它将无法保持其尺寸,因此,提取的污染物较少。第二,含有含水醇溶液的液体弹珠可以由于马兰戈尼效应而在水上自推进,马兰戈尼效应是由两种流体之间的表面张力梯度引起的。利用这种运动将有助于快速定位液滴。液体周围的颗粒排列将根据所使用的颗粒而变化,这意味着颗粒之间的紧密程度将有所不同,它们之间的间隙越大,蒸发率越高。了解这种行为将有助于管理蒸汽损失。此外,可以在两种颗粒类型中涂覆液滴,以这种方式涂覆可以增加大理石的方向性和控制性。然后我将研究微塑料捕获的机制。该项目背后的主要驱动力是微塑料在两者接触时从水到油的移动方式。这允许塑料从水中分离,而不需要过多的能量输入。挑战在于能够轻松地去除油塑料溶液,这也是液体大理石的优势所在。本节将是最密集的时间,因为要考虑的因素很多。主要问题是,在塑料吸收之前或之后形成大理石更好?将选择用于塑料去除的最佳液体类型和要去除的塑料类型;以最丰富的为目标可能是有益的。一旦确定,就很容易从以前的研究中选择要涂覆的颗粒。需要考虑的其余因素是涂层如何阻碍塑料进入大理石。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
  • 批准号:
    12174335
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Delivery of liquid Hydrogen for Various Environment at High Rate
为各种环境高速输送液氢
  • 批准号:
    10110515
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
  • 批准号:
    EP/Y022653/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346687
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
  • 批准号:
    EP/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了