Encapsulation of metallic nanowires inside carbon nanotubes for next generation nanostructured device architectures

将金属纳米线封装在碳纳米管内,用于下一代纳米结构器件架构

基本信息

  • 批准号:
    2281764
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The focus of this work is to establish novel chemical to generate carbon nanotubes filled with metallic materials, their characterisation, and implementation into optimised device geometries. Properties of metallically filled carbon nanotubes are highly dependent on the synthesis technique implemented and the chemical composition and synthesis environment. The Nanomaterials by Design team have made significant progress with large scale production of carbon nanotubes, facilitating their integration into novel nanoengineered materials for use in a variety of different devices. Encapsulating the metallic material allows exploitation of the nanoscale properties of the metallic materials protected both mechanically and from oxidation by the carbon nanotube. State-of-the-art chemical vapour deposition synthesis techniques in conjunction with in situ monitoring technologies allow us to engineer the metallic filling and morphology of carbon nanotubes ultimately altering the physical properties of the generated materials. Other synthesis techniques include electrolysis in molten salts of the desired metallic filling and vapour filling of the desired material. Both in situ and ex situ synthesis techniques are implemented for encapsulation of different metallic materials for varying functionality. Such multi-functional nanomaterials can also be produced into flexible composites or utilised individually. For example, thin films of carbon nanotubes filled with a magnetic material are lightweight, strong, and can be perturbed by magnetic manipulation. Materials with these properties are highly sought for robotics, sensing and ultra-high-density magnetic storage devices. Alternatively, metallically filled nanotubes can provide large surface area and structural stability for anode materials in battery applications. In order to ultimately characterise these materials and confirm their potential application, transmission electron microscopy will be utilised alongside scanning electron microscopy to gauge the degree of filling and morphology of the filled nanotubes. These techniques will be combined with energy-dispersive X-ray spectroscopy and Raman spectroscopy to obtain local compositional data on the fillings. X-ray diffraction will be utilised to characterise the presence of various phases of filled material generated inside the nanotubes to better understanding into the synthesis mechanisms. These results will be correlated to the electrochemical, thermoelectric or magnetic performance of the materials, ultimately providing a feedback loop for the modification of the synthesis procedure, in an iterative fashion, to optimise the desired properties of the materials. The work will be conducted in collaboration with internationally leading experts in the fields of nanomaterials and electrochemical characterisation respectively. Moreover, the research group has a range of industrial collaborators and specific potential applications will be sought once progress has been made with the metallically filled carbon nanotube materials. Traditionally, the students of the Nanomaterials of Design research group are encouraged to engage with academic collaborators as well as industry partners whenever feasible. This research project falls within the EPSRC Energy, Engineering, Healthcare technologies, Manufacturing the future, Physical sciences research areas.
这项工作的重点是建立新的化学产生碳纳米管填充金属材料,其特性,并实施到优化的设备几何形状。金属填充的碳纳米管的性质高度依赖于所实施的合成技术以及化学组成和合成环境。Nanomaterials by Design团队在大规模生产碳纳米管方面取得了重大进展,促进了碳纳米管集成到新型纳米工程材料中,用于各种不同的设备。包封金属材料允许利用金属材料的纳米级性质,所述金属材料被碳纳米管机械地保护并且免于氧化。最先进的化学气相沉积合成技术与原位监测技术相结合,使我们能够设计碳纳米管的金属填充和形态,最终改变所产生材料的物理性质。其他合成技术包括在熔融盐中电解所需的金属填充物和蒸汽填充所需的材料。原位和非原位合成技术都用于封装不同功能的不同金属材料。这种多功能纳米材料也可以制成柔性复合材料或单独使用。例如,填充有磁性材料的碳纳米管薄膜重量轻,坚固,并且可以通过磁操纵来扰动。具有这些特性的材料被高度寻求用于机器人,传感和超高密度磁存储设备。或者,金属填充的纳米管可以为电池应用中的阳极材料提供大的表面积和结构稳定性。为了最终验证这些材料并确认它们的潜在应用,透射电子显微镜将与扫描电子显微镜一起使用,以测量填充纳米管的填充程度和形态。这些技术将与能量色散X射线光谱和拉曼光谱相结合,以获得当地的组成数据的填料。X射线衍射将被用来验证纳米管内部产生的填充材料的各种相的存在,以更好地理解合成机制。这些结果将与材料的电化学、热电或磁性能相关,最终以迭代方式为合成过程的修改提供反馈回路,以优化材料的期望性能。这项工作将分别与纳米材料和电化学表征领域的国际领先专家合作进行。此外,该研究小组拥有一系列工业合作者,一旦金属填充碳纳米管材料取得进展,将寻求具体的潜在应用。传统上,设计研究小组的纳米材料的学生被鼓励与学术合作者以及行业合作伙伴在可行的情况下参与。该研究项目福尔斯EPSRC能源,工程,医疗保健技术,制造未来,物理科学研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
  • 批准号:
    DE240100917
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Designing metallic glass structures for damage tolerance via 3D printing
通过 3D 打印设计金属玻璃结构以实现损伤容限
  • 批准号:
    DP240101127
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Designing Multi-Metallic Compound Electrocatalysts for Chemicals Production
设计用于化学品生产的多金属化合物电催化剂
  • 批准号:
    DE240100661
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Re-engineering metallic-based nanostructures for carbon dioxide conversion
重新设计用于二氧化碳转化的金属基纳米结构
  • 批准号:
    DE230101617
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
The development of multi-metallic low oxidation state main-group compounds
多金属低氧化态主族化合物的研制
  • 批准号:
    EP/Y000129/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Discovery of Self-Assembled Network Phases And Metallic Nanostructures Driven by Confinement
限制驱动的自组装网络相和金属纳米结构的发现
  • 批准号:
    2411155
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了