Are the pathways that protect tissues from mechanical stress lost in ageing?
保护组织免受机械应力的途径是否会因衰老而丧失?
基本信息
- 批准号:2282703
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The defining qualities of our cells - their physical features and function - can be determined by their surroundings, but the tissue environment can be demanding. Just as our muscles regenerate and are conditioned by exercise to maintain health, our cells have developed mechanisms to protect against damage induced by mechanical stress. A fundamental response to stress is the production of chaperone proteins within our cells. These molecular machines act to limit and reverse damage by refolding the proteins unwound by stress back into functional structures. However, these mechanisms are thought to deteriorate as we age. This loss of function may be compounded by other factors affecting ageing tissue. The extracellular matrix - the material in which cells are embedded - may stiffen and become fibrotic in ageing tissue, changing the ways that tissue-resident cells experience mechanical stresses. A knowledge of the pathways that enable cells to sense and respond to physical signals is therefore key to understanding the ageing process. This project will look at how senescent cells, used as a model of ageing, respond to periods of cyclic straining in two- and three-dimensional environments. It will build on new and exciting findings from the Swift laboratory: (i) that senescent cells lose their ability to 'feel' and respond to the mechanical properties of their environments; (ii) that senescent cells also lose their ability to express protective chaperone proteins when faced with stress; and (iii) that regulation of mechano-sensitivity and chaperone expression are integral to the strain response in healthy (i.e. nonsenescent) cells. The responses of senescent cells will be compared to control cells using combinations of: microscopy, to characterise structural and morphological changes within cells; mass spectrometry proteomics, to identify, in an unbiased way, the stress-regulation pathways abrogated in senescence; and RNA-Seq transcriptomics to establish complete signalling pathways. We will also look for evidence of compromised cellular integrity, such as the accruement of DNA damage. Important pathways will be investigated in more detail by knocking down key proteins, or by expressing proteins in senescent cells to restore function. This 'Underpinning Bioscience' project will take a multidisciplinary approach to deliver fundamental insight into the ageing process in mechanically loaded tissues. It will aim to build a holistic picture of how cells function, from a molecular level to their integration within three-dimensional environments that replicate active, living tissues. The project will deliver on the BBSRC's ENWW remit in two ways: Firstly, it will build on the Swift lab's experience in integrating complex '-omics' datasets with imaging and molecular biology methods to give a complete understanding of the underlying biology. The student will analyse samples using mass spectrometry proteomics and RNA-Seq (with support from Core Facilities), and will interpret the data with assistance from established collaborators with backgrounds in bioinformatics and statistics. Secondly, it is very much an interdisciplinary project that combines methods in molecular and cell biology with biophysics to build an improved understanding of the physiological ageing process. The student will have access to a broad range of tools in biology, physics and engineering laboratories. They will learn how to solve problems in novel ways and will be well placed to take advantage of the exciting and underexploited areas of overlap between disciplines.
我们细胞的定义品质——它们的物理特征和功能——可以由它们的周围环境决定,但组织环境可能要求很高。正如我们的肌肉会再生并通过锻炼来保持健康一样,我们的细胞也发展出了机制来防止机械应力引起的损伤。对压力的基本反应是细胞内伴侣蛋白的产生。这些分子机器通过将因压力而解开的蛋白质重新折叠回功能结构来限制和逆转损伤。然而,这些机制被认为会随着年龄的增长而恶化。这种功能丧失可能会因影响老化组织的其他因素而加剧。细胞外基质(细胞嵌入的材料)可能会在老化组织中变硬并纤维化,从而改变组织驻留细胞经历机械应力的方式。因此,了解细胞感知和响应物理信号的途径是理解衰老过程的关键。 该项目将研究用作衰老模型的衰老细胞如何对二维和三维环境中的循环应变周期做出反应。它将建立在斯威夫特实验室令人兴奋的新发现的基础上:(i)衰老细胞失去“感觉”和对其环境的机械特性做出反应的能力; (ii) 衰老细胞在面临压力时也会失去表达保护性伴侣蛋白的能力; (iii) 机械敏感性和伴侣表达的调节对于健康(即非衰老)细胞的应变反应是不可或缺的。将使用以下组合将衰老细胞的反应与对照细胞进行比较: 显微镜,以表征细胞内的结构和形态变化;质谱蛋白质组学,以公正的方式识别衰老过程中消除的压力调节途径;和RNA-Seq转录组学以建立完整的信号通路。我们还将寻找细胞完整性受损的证据,例如 DNA 损伤的累积。通过敲除关键蛋白质或通过在衰老细胞中表达蛋白质来恢复功能,将更详细地研究重要途径。 这个“基础生物科学”项目将采用多学科方法来提供对机械负载组织老化过程的基本见解。其目标是全面了解细胞如何发挥作用,从分子水平到细胞在复制活性活体组织的三维环境中的整合。该项目将以两种方式履行 BBSRC 的 ENWW 职责:首先,它将建立在 Swift 实验室将复杂的“组学”数据集与成像和分子生物学方法相结合的经验基础上,以全面了解基础生物学。学生将使用质谱蛋白质组学和 RNA-Seq 分析样本(在核心设施的支持下),并将在具有生物信息学和统计学背景的既定合作者的帮助下解释数据。其次,它在很大程度上是一个跨学科项目,将分子和细胞生物学方法与生物物理学相结合,以加深对生理衰老过程的理解。学生将能够使用生物学、物理和工程实验室的各种工具。他们将学习如何以新颖的方式解决问题,并将充分利用学科之间令人兴奋且尚未充分开发的重叠领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
- 批准号:
10641389 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development ofsynthetic heparin to protect liver graft from ischemia reperfusion injury duringtransplantation
开发合成肝素以保护移植肝免受移植过程中的缺血再灌注损伤
- 批准号:
10759102 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of lung resident innate lymphocytes that specifically protect neonates from SARS-CoV-2 infections
鉴定可特异性保护新生儿免受 SARS-CoV-2 感染的肺固有淋巴细胞
- 批准号:
10742495 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating mechanisms of interferon gamma that protect against Ebola virus infection
阐明干扰素γ预防埃博拉病毒感染的机制
- 批准号:
10539126 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Elucidating mechanisms of interferon gamma that protect against Ebola virus infection
阐明干扰素γ预防埃博拉病毒感染的机制
- 批准号:
10696250 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Surface Induced Epithelial Differentiation Improves Percutaneous Device Longevity
表面诱导上皮分化可提高经皮装置的使用寿命
- 批准号:
10614520 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Surface Induced Epithelial Differentiation Improves Percutaneous Device Longevity
表面诱导上皮分化可提高经皮装置的使用寿命
- 批准号:
10391337 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Surface Induced Epithelial Differentiation Improves Percutaneous Device Longevity
表面诱导上皮分化可提高经皮装置的使用寿命
- 批准号:
10187780 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Changing the energy substrate balance: Does APOE2 promote glucose usage to protect from Alzheimer's Disease?
改变能量底物平衡:APOE2 是否会促进葡萄糖的使用以预防阿尔茨海默病?
- 批准号:
9902294 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Development of radioprotectors that selectively protect normal tissues
开发选择性保护正常组织的放射防护剂
- 批准号:
19H03604 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)