Stabilizing therapeutic protein solutions: Optimisation and Evaluation of Excipient Properties using MD, QSAR and Synthesis
稳定治疗性蛋白质溶液:使用 MD、QSAR 和合成优化和评估赋形剂特性
基本信息
- 批准号:2283681
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aggregation of therapeutic proteins including antibodies has been identified as a major challenge to their commercialisation and clinical use. Aggregation can cause reduced biological activity, increased viscosity and potentially enhanced immunogenicity. These issues have resulted in the employment of several types of excipients in current therapeutic protein formulations (Humira (adalimumab) contains 0.1% W/V polysorbate 80 (TWEEN80), Raptiva (efalizumab) 0.2% W/V polysorbate 20 (TWEEN20), Orencia (abatacept) contains poloxamer 188 (pluronic F-68). These non- ionic surfactants have been chosen mainly because they have well established safety profiles, rather than outstanding performance as protein stabilizing agents.The proposed research will have two main activities. Using existing excipient structures with known properties and literature data, a combination of in silico molecular dynamics and where sufficient related excipient structures have been studied, in silico QSAR studies incorporating machine learning will be undertaken.Using techniques we have established through previous CDT projects (see Mackenzie, JCTC 2015, 11, 2705-2713) molecular dynamics simulations will study the interactions between selected excipients and proteins with established 3-dimensional structure. These will characterise the locations, strengths, and (possibly) timescales of interactions, and the effects that excipient interactions haver on the structure of the protein.Machine learning methods will be used to model the relationships between chemical structures of the excipients and their protein binding affinities. A variety of 2D- and 3D-representations will be used to describe the chemical structures. Graph-based approaches capture the connectivity of different atom types and are quick to compute and readily generalizable. Interaction fields are derived from the 3D structures of the molecules and can be extended to incorporate conformational sampling. These representations will be used to train machine learning methods, including support vector machines, neural networks and random forests. New experimental data will be used to refine the machine learning methods, increasing their predictive ability. Conversely, the models will be used to guide subsequent experiments, in order to test specific hypotheses about the importance of various physicochemical properties and to identify more effective excipients.The results of these studies will inform and guide the development of new protein stabilization excipients, both through moderate modifications such as homologation/monomer extension of existing surfactants and more disruptive changes such as the inclusion of new functional groups that can change the LogP/LogD; rotational freedom (i.e addition of E/Z alkenes or cyclopropyl/diol groups to unsaturated ); H-bonding ability; -stacking ability; or inclusion of charged groups such as the guanidine group as found in arginine (an excipient that can ion-pair, H-bond with carboxylate groups and form -cation interactions with aromatic groups). The ability of both existing and new compounds to stabilize a range of therapeutic proteins (insulin, abatacept, human serum albumin, adalimumab) in solution will then be studied using a manifold of biophysical techniques (CD, ITC, SEC, DLS, AUC) in order to determine which has the largest stabilizing effect, and to quantify the surfactant structure and activity.The student will therefore be trained in a range of complementary techniques including computational methods, organic synthesis and compound characterization and a range of biophysical techniques for characterizing protein-excipient mixtures. This project fits within the 21st Century Products priority, Healthcare Technologies (developing future therapies) and manufacturing for the future themes of the EPSRC.Project aligned to Predictive Pharmaceutical Sciences, Advanced Product Design and Complex Product Characterisation
包括抗体在内的治疗性蛋白质的聚集已被确定为其商业化和临床应用的主要挑战。聚集可导致生物活性降低、粘度增加和潜在的免疫原性增强。这些问题导致在目前的治疗性蛋白质制剂中使用几种类型的赋形剂(Humira(阿达木单抗)含有0.1% W/V聚山梨酯80(TWEEN 80),Raptiva(依法利珠单抗)含有0.2% W/V聚山梨酯20(TWEEN 20),Orencia(阿巴西普)含有泊洛沙姆188(普朗尼克F-68)。选择这些非离子表面活性剂主要是因为它们具有良好的安全特性,而不是作为蛋白质稳定剂的出色性能。使用具有已知性质的现有辅料结构和文献数据,结合计算机分子动力学和已研究的足够相关辅料结构,将进行结合机器学习的计算机QSAR研究。(参见麦肯齐,JCTC 2015,11,2705-2713)分子动力学模拟将研究所选赋形剂与具有已建立的三维结构的蛋白质之间的相互作用。这些将描述相互作用的位置、强度和(可能的)时间尺度,以及赋形剂相互作用对蛋白质结构的影响。机器学习方法将用于建模赋形剂的化学结构与其蛋白质结合亲和力之间的关系。将使用各种2D和3D表示来描述化学结构。基于图的方法捕获不同原子类型的连接性,并且计算速度快,易于推广。相互作用场来自分子的3D结构,并且可以扩展到包含构象采样。这些表示将用于训练机器学习方法,包括支持向量机,神经网络和随机森林。新的实验数据将用于改进机器学习方法,提高其预测能力。相反,这些模型将用于指导后续实验,以检验有关各种理化性质重要性的特定假设,并确定更有效的辅料。这些研究的结果将为新的蛋白质稳定辅料的开发提供信息和指导,通过适度的修饰,如同源化/现有表面活性剂的单体扩展和更多的破坏性变化,例如包含可以改变LogP/LogD的新官能团;旋转自由度(即E/Z烯烃或环丙基/二醇基团加成至不饱和的);或者包括带电基团,例如在精氨酸中发现的胍基(一种赋形剂,其可以与羧酸根基团离子配对、氢键结合并与芳族基团形成阳离子相互作用)。现有和新化合物稳定一系列治疗性蛋白质的能力(胰岛素、阿巴西普、人血清白蛋白、阿达木单抗)在溶液中的浓度进行研究(CD、ITC、SEC、DLS、AUC)以确定哪一种具有最大的稳定作用,并量化表面活性剂的结构和活性。因此,学生将接受一系列补充技术的培训,包括计算方法,有机合成和化合物表征以及一系列用于表征蛋白质-赋形剂混合物的生物物理技术。该项目符合21世纪世纪产品优先级、医疗保健技术(开发未来疗法)和EPSRC未来主题的制造。该项目与预测药物科学、先进产品设计和复杂产品表征相一致
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
芍药苷靶向α-烯醇化酶治疗实验性自身免疫性脑脊髓炎的机制研究
- 批准号:82371809
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
EmCAST: Stabilizing Proteins and Tuning Dynamics with High Precision and Accuracy
EmCAST:以高精度和准确度稳定蛋白质并调节动力学
- 批准号:
10566514 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A small calcium-binding protein may be key to stabilizing the sensory hair cell stereocilia Elongation Complex
一种小的钙结合蛋白可能是稳定感觉毛细胞静纤毛伸长复合物的关键
- 批准号:
10461631 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A small calcium-binding protein may be key to stabilizing the sensory hair cell stereocilia Elongation Complex
一种小的钙结合蛋白可能是稳定感觉毛细胞静纤毛伸长复合物的关键
- 批准号:
10580594 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EmCAST: Stabilizing Proteins and Tuning Dynamics with High Precision and Accuracy
EmCAST:以高精度和准确度稳定蛋白质并调节动力学
- 批准号:
10709645 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Stabilizing Brain Function via Glial Epigenetic Signaling
通过神经胶质表观遗传信号稳定大脑功能
- 批准号:
10438708 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stabilizing Brain Function via Glial Epigenetic Signaling
通过神经胶质表观遗传信号稳定大脑功能
- 批准号:
10656206 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stabilizing Brain Function via Glial Epigenetic Signaling
通过神经胶质表观遗传信号稳定大脑功能
- 批准号:
10188664 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Stabilizing Brain Function via Glial Epigenetic Signaling
通过神经胶质表观遗传信号稳定大脑功能
- 批准号:
10023782 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cell-Penetrable and in vivo activatable mini-chaperones: A potential therapeutic strategy for stabilizing protein misfolding in disease states.
细胞可穿透且体内可激活的迷你伴侣:在疾病状态下稳定蛋白质错误折叠的潜在治疗策略。
- 批准号:
9765315 - 财政年份:2018
- 资助金额:
-- - 项目类别: