Towards Verification of Bayesian Inference on Probabilistic Programs

概率程序贝叶斯推理的验证

基本信息

  • 批准号:
    2285273
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Context: This research project is concerned with probabilistic programming. Probabilistic programs are a way to express statistical models as computer programs and to automate statistical inference methods on them. In this way, probabilistic programming simplifies Bayesian modeling for applied statisticians and other scientists. Therefore, it has had substantial impact on statistical modeling already, with tools like "Stan" (a probabilistic programming system) being used by statisticians, for example modeling the spread of Covid. There are also applications to machine learning as the Bayesian approach makes it easier to quantify uncertainty.Aims: This particular project aims to verify the inference results obtained by existing statistical inference algorithms. This is desirable because there are classes of models where existing methods perform poorly and this is sometimes difficult to detect in practice. The potential impact of this project is to help find bugs in existing inference methods and to help develop new ones.Novelty of the methodology: This project seeks to achieve these objectives with a new class of inference methods that provide guaranteed bounds on the inference result. As such, they occupy a middle ground between exact inference methods (which always give the correct result but are rarely applicable) and approximate methods (which can always be applied but may take a long time to converge to the correct result for some models). Such guaranteed bounds are obtained by means of "abstract interpretation", a well-known concept in program verification. This project is exploring a number of instances of this technique: "interval traces", "probability generating functions", and others. This is augmented with optimizations exploiting linear structure, which is common in statistical models and thus probabilistic programs. Results that have already been published suggest that such techniques can be superior to statistical validation methods and are able to handle some programming language features, such as recursion, better than existing methods. There is also the potential in combining these guaranteed bounds with approximate (randomized) inference methods. The bounds could be improved based on the sample density of approximate inference results. Conversely, guaranteed bounds could inform approximate inference methods like importance sampling by providing global information about the distribution of probability mass.EPSRC research areas: This project falls within the EPSRC research areas of "Programming languages and compilers", "Verification and Correctness", and "Statistics and applied probability".Collaborators: Part of this project was carried out with Raven Beutner from CISPA Helmholtz Center for Information Security in Germany. The project is supervised by Luke Ong.
背景:该研究项目涉及概率规划。概率程序是将统计模型表达为计算机程序并对其进行自动化统计推断方法的一种方法。通过这种方式,概率编程简化了应用统计学家和其他科学家的贝叶斯建模。因此,它已经对统计建模产生了重大影响,统计学家使用“Stan”(概率编程系统)等工具,例如对 Covid 的传播进行建模。贝叶斯方法也可以应用于机器学习,因为贝叶斯方法可以更容易地量化不确定性。 目的:这个特定项目旨在验证现有统计推理算法获得的推理结果。这是可取的,因为现有方法在某些模型类别中表现不佳,并且有时在实践中很难检测到。该项目的潜在影响是帮助发现现有推理方法中的错误并帮助开发新的推理方法。方法的新颖性:该项目旨在通过一类新的推理方法来实现这些目标,这些方法为推理结果提供有保证的界限。因此,它们占据精确推理方法(总是给出正确结果但很少适用)和近似方法(总是可以应用但对于某些模型可能需要很长时间才能收敛到正确结果)之间的中间地带。这种有保证的界限是通过“抽象解释”获得的,这是程序验证中众所周知的概念。该项目正在探索该技术的许多实例:“间隔轨迹”、“概率生成函数”等。利用线性结构的优化增强了这一点,这在统计模型和概率程序中很常见。已经发表的结果表明,此类技术优于统计验证方法,并且能够比现有方法更好地处理某些编程语言功能,例如递归。将这些保证边界与近似(随机)推理方法相结合也具有潜力。可以根据近似推理结果的样本密度来改进界限。相反,保证界限可以通过提供有关概率质量分布的全局信息来为重要性采样等近似推理方法提供信息。 EPSRC 研究领域:该项目属于 EPSRC 研究领域的“编程语言和编译器”、“验证和正确性”以及“统计和应用概率”。合作者:该项目的部分内容是与 CISPA 亥姆霍兹信息安全中心的 Raven Beutner 一起完成的 在德国。该项目由 Luke Ong 监督。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Trust Matrix: A blockchain-driven system for business identity verification, increasing business efficiency and reducing fraud.
Trust Matrix:区块链驱动的企业身份验证系统,可提高业务效率并减少欺诈。
  • 批准号:
    10099958
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
AF: Small: Verification Complexities of Self-Assembly Systems
AF:小:自组装系统的验证复杂性
  • 批准号:
    2329918
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
  • 批准号:
    24K20735
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了