Neurobiology of Circadian Dysrhythmias
昼夜节律失常的神经生物学
基本信息
- 批准号:6780169
- 负责人:
- 金额:$ 29.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2008-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Daily rhythms are governed by endogenous circadian clocks, and, in mammals, by the suprachiasmatic nucleus (SCN). The circadian system is complex, with an SCN tissue pacemaker containing multiple, coupled single-cell oscillators and a system composed of interlocking and nested auto-regulatory feedback loops. Advances have been made in delineating the main elements of this network, and we can now begin to analyze its stimulus-response properties at the molecular, cellular, tissue, and behavioral levels. What we are finding is that the system's output after a given input may not be linear, with striking consequences for animal behavior. Notable examples of this are some of the effects of constant light (LL) - "splitting" in golden hamsters and circadian rhythmicity in genetically-deficient mice - that dramatically reorganize the circadian system. We propose to study these phenomena experimentally, but from a perspective that is not traditionally applied in research on hamsters and mice. It is known that complex systems often exhibit two or more stable states - like split & unsplit, or rhythm & no rhythm - that are accessible by small, properly timed perturbations. The preferred state of such systems may switch under certain conditions, e.g., if the outside environment or a system component is altered. Using hamsters and mice, we present preliminary evidence for the potential bi-stability of the rodent circadian system and outline an experimental program for investigating its neurobiology. In Aim 1, we test our hypothesis that bi-stability in the hamster circadian system is revealed in split hamsters that are transferred from LL to darkness, a condition in which the normally favored unsplit state becomes less robust and more vulnerable to being switched to the split state. In Aim 2, we test our hypothesis that LL fosters splitting by introducing an element of noise into an inherently bi-stable circadian system, ultimately propelling the switch from an unsplit to split state. We also test our hypothesis that the running wheel itself is a necessary part of the splitting process. In Aim 3, we test our hypothesis that genetically-deficient murine circadian systems, being less robust than wild type in the circadian domain, are vulnerable to being switched to alternative rhythmic or quiescent states, [especially] by the tonic or noisy inputs in LL. We predict that our studies will provide new insights on the organization of complex circadian systems, on their vulnerability to imperfections in system components and environmental changes, and perhaps even on our views of circadian dysrhythmias and how they might be repaired.
描述(由申请人提供):日常节律由内源性生物钟控制,在哺乳动物中,由视交叉上核(SCN)控制。昼夜节律系统是复杂的,SCN组织起搏器包含多个耦合的单细胞振荡器和一个由互锁和嵌套的自调节反馈回路组成的系统。在描述这个网络的主要元素方面已经取得了进展,我们现在可以开始在分子、细胞、组织和行为水平上分析它的刺激反应特性。我们发现,系统在给定输入后的输出可能不是线性的,这对动物的行为产生了惊人的影响。这方面值得注意的例子是恒定光(LL)的一些影响——金仓鼠的“分裂”和基因缺陷小鼠的昼夜节律——它们戏剧性地重组了昼夜节律系统。我们建议对这些现象进行实验研究,但从一个传统上没有应用于仓鼠和小鼠研究的角度。众所周知,复杂系统通常表现出两种或两种以上的稳定状态,如分裂和不分裂,或有节奏和无节奏,这些状态可以通过小的、适当的时间扰动来实现。这种系统的优选状态可以在某些条件下切换,例如,如果外部环境或系统组件被改变。利用仓鼠和小鼠,我们提出了啮齿动物昼夜节律系统潜在双稳定性的初步证据,并概述了研究其神经生物学的实验计划。在Aim 1中,我们验证了我们的假设,即仓鼠昼夜节律系统的双稳定性在从亮到暗的分裂仓鼠中被揭示出来,在这种情况下,通常有利的未分裂状态变得不那么强大,更容易被切换到分裂状态。在目标2中,我们测试了我们的假设,即LL通过将噪声元素引入固有的双稳定昼夜节律系统来促进分裂,最终推动从未分裂状态切换到分裂状态。我们还验证了我们的假设,即运行轮本身是分裂过程的必要部分。在Aim 3中,我们验证了我们的假设,即基因缺陷的小鼠昼夜节律系统在昼夜节律域中不如野生型健壮,容易被切换到可选择的节律或静止状态,[特别是]由LL中的张力或噪声输入。我们预测,我们的研究将为复杂昼夜节律系统的组织、它们对系统组件缺陷和环境变化的脆弱性提供新的见解,甚至可能为我们对昼夜节律紊乱及其如何修复的看法提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William J Schwartz其他文献
THE CIRCADIAN-GATED TIMING OF BIRTH IN RATS: DISRUPTION BY MATERNAL SCN LESIONS OR BY REMOVAL OF THE FETAL BRAIN
大鼠出生的昼夜节律性定时:母体 SCN 损伤或胎儿大脑切除的破坏
- DOI:
10.1203/00006450-198704010-00323 - 发表时间:
1987-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Steven M Reppert;William J Schwartz;David R Weaver - 通讯作者:
David R Weaver
William J Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William J Schwartz', 18)}}的其他基金
Circadian Biology at the Supra-Organismal Level
超有机体水平的昼夜节律生物学
- 批准号:
8420539 - 财政年份:2010
- 资助金额:
$ 29.42万 - 项目类别:
Circadian Biology at the Supra-Organismal Level
超有机体水平的昼夜节律生物学
- 批准号:
7779841 - 财政年份:2010
- 资助金额:
$ 29.42万 - 项目类别:
Circadian Biology at the Supra-Organismal Level
超有机体水平的昼夜节律生物学
- 批准号:
8225275 - 财政年份:2010
- 资助金额:
$ 29.42万 - 项目类别:
Circadian Biology at the Supra-Organismal Level
超有机体水平的昼夜节律生物学
- 批准号:
8052728 - 财政年份:2010
- 资助金额:
$ 29.42万 - 项目类别:
HYPOTHALAMIC RECONSTRUCTION USING NEURAL PRECURSOR CELLS
使用神经前体细胞进行下丘脑重建
- 批准号:
6229027 - 财政年份:2000
- 资助金额:
$ 29.42万 - 项目类别:
HYPOTHALAMIC RECONSTRUCTION USING NEURAL PRECURSOR CELLS
使用神经前体细胞进行下丘脑重建
- 批准号:
6477196 - 财政年份:2000
- 资助金额:
$ 29.42万 - 项目类别:
HYPOTHALAMIC RECONSTRUCTION USING NEURAL PRECURSOR CELLS
使用神经前体细胞进行下丘脑重建
- 批准号:
6625500 - 财政年份:2000
- 资助金额:
$ 29.42万 - 项目类别: