Investigating Properties of Non-Markov Stochastic Processes with Application to Modelling the Dynamics of Financial Markets

研究非马尔可夫随机过程的性质及其在金融市场动态建模中的应用

基本信息

  • 批准号:
    2328227
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The very recent studies conducted by my PhD advisor, Dr Luca Giuggioli, have cleared a path for a systematic approach to develop models for the dynamics of non-Markov stochastic systems. The approach exploits the well-known connection between the description via an ordinary differential equation with additive noise (Langevin equation) and the associated partial differential equation for the associated probability distribution (Fokker-Planck equation). While this connection is well-known for Markov systems, it has been modified to deal with the case of a linear time non-local Langevin equation, e.g. the linear delayed Langevin equation. Previously, in my Master's thesis, I have shown that this procedure allows one to study first-passage properties of random delayed systems, as well as situations where absorbing or reflecting boundaries are imposed on the dynamics. In the case of a non-linear delayed Langevin equation, approximate methodologies for moment-hierarchy truncation employed in Markov cases can be borrowed and used with the Fokker-Planck equations associated with the non-Markov cases. The PhD thus presents the opportunity to build on the knowledge accumulated during my Master's thesis on first-passage properties and boundary effects and investigate a plethora of non-linear non-Markov systems. The modelling applications for non-Markov stochastic processes are boundless. While Markov models are widely used to represent stochastic processes across the sciences and engineering, non-Markov models bring about a greater accuracy for those systems in which history plays an important role. While there are plenty of opportunities in employing non-Markov models to study processes across the sciences, I am interested in modelling financial systems in general, and market dynamics in particular. Markov models have a long history in the study of financial systems and have also been relatively successful at making predictions. However, in an arena where the smallest of margins can be the difference between a profit and a loss, there is an emerging awareness that more accurate models are necessary. Non-Markov models will certainly leap the predictive abilities forward. As an example, the celebrated Black-Scholes formula for calculating options pricing has been shown to produce some awry results when compared to market data. It has been postulated that the cause of this is that the Black-Scholes formula assumes constant volatility, when in some cases it is time dependent. This formula is based on the underlying asset price dynamics undergoing geometric Brownian motion (a Markov process), where evidence now suggests there is some history dependence affecting future asset prices. This calls for the introduction of a non-Markov model to represent the underlying asset price dynamics, such as using variants of the delayed Langevin equation. In addition, first passage properties and bounded dynamics correspond to financial applications, e.g. the optimal time to sell an asset can be interpreted as the first-passage time to a certain price, and trading in the presence of some asset price caps can be modelled as the process in the presence of boundaries. To conclude, the mathematical theory required for modelling financial processes is certainly a direct application of the formalism that is being studied during this PhD. This project falls within the EPSRC Mathematical Sciences research area, specifically largely in Statistics and Applied Probability theory.
我的博士导师Luca Giuggioli博士最近进行的研究为系统方法开发非马尔可夫随机系统的动态模型扫清了道路。该方法利用了众所周知的连接之间的描述通过一个常微分方程加性噪声(朗之万方程)和相关的偏微分方程的相关概率分布(福克-普朗克方程)。虽然这种连接是众所周知的马尔可夫系统,它已被修改,以处理的情况下,线性时间非局部朗之万方程,例如线性延迟朗之万方程。以前,在我的硕士论文中,我已经表明,这个过程允许一个研究随机延迟系统的首次通过性能,以及吸收或反射边界施加在动态的情况。在非线性延迟朗之万方程的情况下,近似的方法,用于在马尔可夫情况下的时刻层次截断可以借用和使用与非马尔可夫情况下的福克-普朗克方程。因此,博士学位提供了一个机会,可以利用我在硕士论文中积累的关于首次通过性质和边界效应的知识,并研究大量的非线性非马尔可夫系统。非马尔可夫随机过程的建模应用是无限的。虽然马尔可夫模型被广泛用于表示科学和工程中的随机过程,但非马尔可夫模型为那些历史扮演重要角色的系统带来了更高的准确性。虽然有很多机会采用非马尔可夫模型来研究跨学科的过程,但我对一般的金融系统建模感兴趣,特别是市场动态。马尔可夫模型在研究金融系统方面有着悠久的历史,并且在预测方面也相对成功。然而,在一个竞技场中,最小的利润率可能是利润和亏损之间的差异,人们逐渐意识到需要更准确的模型。非马尔可夫模型肯定会使预测能力向前飞跃。作为一个例子,著名的布莱克-斯科尔斯公式计算期权定价已被证明产生一些错误的结果相比,市场数据。据推测,其原因是布莱克-斯科尔斯公式假设波动率恒定,而在某些情况下波动率是时间依赖的。该公式基于经历几何布朗运动(马尔可夫过程)的基础资产价格动态,现在有证据表明存在影响未来资产价格的历史依赖性。这就需要引入一个非马尔可夫模型来表示基础资产价格动态,例如使用延迟朗之万方程的变体。此外,首次通过属性和有界动态对应于金融应用,例如,出售资产的最佳时间可以被解释为达到某个价格的首次通过时间,并且在存在某些资产价格上限的情况下的交易可以被建模为存在边界的过程。总而言之,金融过程建模所需的数学理论无疑是本博士研究的形式主义的直接应用。该项目属于EPSRC数学科学研究领域的福尔斯,特别是在统计和应用概率论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
  • 批准号:
    24K18002
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
  • 批准号:
    2238365
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-invasive quantitative evaluation of liver diseases using comprehensive biophysical properties database as basis for ultrasound pathology
以综合生物物理特性数据库作为超声病理学基础对肝脏疾病进行无创定量评估
  • 批准号:
    23H03758
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non contact measurement of Semiconductor Properties
半导体特性的非接触式测量
  • 批准号:
    10074644
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Study on the pressure-dependent luminescence, non-linear optics, and vibrational properties of novel lanthanide complexes
新型稀土配合物的压力依赖性发光、非线性光学和振动特性研究
  • 批准号:
    23K19238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Elucidation of macroscopic physical properties of non-equilibrium soft matter driven by local force
阐明局部力驱动的非平衡软物质的宏观物理性质
  • 批准号:
    22KJ2420
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Nanochannel Membranes Having Rapid Transport Properties in Aqueous and Non-aqueous Solutions
开发在水和非水溶液中具有快速传输特性的纳米通道膜
  • 批准号:
    23K17369
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2203660
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2204252
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Biocatalytic Enantioselective Synthesis of Non-Biaryl and Hetero-Biaryl Atropisomers and Testing of their Antimalarial Properties
非联芳基和杂联芳基阻转异构体的生物催化对映选择性合成及其抗疟性能测试
  • 批准号:
    10534903
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了