Solar Accelerated Electron Beam-Plasma Interactions in our Solar System
太阳系中太阳加速电子束-等离子体相互作用
基本信息
- 批准号:2391862
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our Sun's outer atmosphere is extremely unstable. Frequent explosions accelerate particle beams to near-light speeds, and periodically expel huge volumes of mass, known as solar storms. The effect of our active Sun on the Earth is known as space weather. Understanding the acceleration and transport of these particle beams is an important, modern challenge, previously hindered by a lack of spacecraft measurements near the Sun. The goal of this project is to understand how these particle beams evolve on their journey through the solar system using a combined programme of data from cutting-edge spacecraft and advanced simulations. A new frontier of near-Sun plasma measurements is being taken by NASA's Parker Solar Probe (launched 2018) and ESA's Solar Orbiter (launching 2020), both flying closer to the Sun than ever before. These spacecraft fly through the solar wind, hot plasma that continuously streams out from the Sun and populates the interplanetary space. We will quantify how electron beams resonantly interact with waves in the solar atmosphere and the solar wind. This will involve measuring the time evolution of the near-relativistic electron distribution function at many different distances from the Sun. The particle data can then be compared with increases in local electric fields; the signature of beam-generated plasma waves. The new measurements will allow us to test the validity of existing theories regarding electron energy loss, wave generation, and how both are affected by the turbulent nature of the solar wind. We will then utilise high-performance numerical simulations that model the transport of electrons and their interaction with plasma waves. By including our cutting-edge solar wind data measurements as simulations inputs, we will refine our understanding about how electrons lose energy and change trajectories through the solar system. We will also explore the initial acceleration characteristics in the solar atmosphere, where spacecraft are unable to enter. The new models can make important predictions, including the arrival times of electron beams at Earth. Such outputs can be used to update space weather models that help secure safety for future space technology. This combination of simulations and wide-ranging observations presents an exciting opportunity to significant progress human knowledge and understanding of how the Sun works, and how it interacts with our solar system.
太阳的外层大气非常不稳定。频繁的爆炸将粒子束加速到接近光速,并周期性地排出巨大的质量,称为太阳风暴。太阳活动对地球的影响被称为空间天气。了解这些粒子束的加速和传输是一个重要的现代挑战,以前由于缺乏太阳附近的航天器测量而受到阻碍。该项目的目标是利用来自尖端航天器的数据和先进模拟的综合方案,了解这些粒子束在太阳系中的演变过程。NASA的帕克太阳探测器(2018年发射)和欧空局的太阳轨道器(2020年发射)正在进行近太阳等离子体测量的新前沿,两者都比以往任何时候都更接近太阳。这些航天器在太阳风中飞行,太阳风是从太阳不断流出并填充行星际空间的热等离子体。我们将量化电子束如何与太阳大气和太阳风中的波共振相互作用。这将涉及测量距太阳许多不同距离处的近相对论性电子分布函数的时间演化。然后,粒子数据可以与局部电场的增加进行比较;电子束产生的等离子体波的特征。新的测量将使我们能够测试现有理论的有效性,这些理论涉及电子能量损失、波的产生以及两者如何受到太阳风湍流性质的影响。然后,我们将利用高性能的数值模拟,模拟电子的传输及其与等离子体波的相互作用。通过将我们最先进的太阳风数据测量作为模拟输入,我们将完善我们对电子如何失去能量和改变太阳系轨迹的理解。我们还将探索航天器无法进入的太阳大气层中的初始加速特性。新模型可以做出重要的预测,包括电子束到达地球的时间。这类产出可用于更新有助于确保未来空间技术安全的空间气象模型。这种模拟和广泛观测的结合提供了一个令人兴奋的机会,可以显著提高人类对太阳如何工作以及它如何与太阳系相互作用的认识和理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
- 批准号:
10107050 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
- 批准号:
EP/Z531261/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
- 批准号:
NE/Y000838/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
- 批准号:
24K08582 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
- 批准号:
2338313 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
- 批准号:
10091589 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
- 批准号:
DP240101458 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
- 批准号:
DE230100754 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award