Generalized Symmetries in Quantum Field Theory and Holography

量子场论和全息术中的广义对称性

基本信息

  • 批准号:
    2422867
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The goal of this project is the comprehensive analysis of higher form symmetries in quantum field theories in various dimensions. Higher form symmetries generalize the concept of `ordinary' symmetries studied widely in quantum field theory, and mathematical physics more broadly. Ordinary symmetries have charged objects given by local operators and charge operators that are topological of codimension one. This concept can be extended to higher dimensional charged objects to describe a higher form symmetry. Many standard results carry over to this generalization, but the broader scope also allows for new physical insights to be obtained by studying the higher form symmetries of a theory.A particular focus will be on conformally invariant theories with supersymmetry. These will be studied starting with the 6d superconformal theories (SCFTs), which upon dimensional reduction and RG-flow give rise to lower dimensional SCFTs. The project will focus on studying the relation between higher form symmetries and the dimensional reduction, in particular from 6d to 5d/4d/3d. Furthermore, the study of higher form symmetries will also require the analysis of 't Hooft anomalies of such global symmetries, as well as mixed anomalies between higher form symmetries. To complement this field theoretic approach, the project will also analyze the imprint of higher form symmetries in the holographic dual descriptions of SCFTs. Holography has emerged as a framework for studying strongly-coupled SCFTs, in terms of a dual gravitational theory in an anti-de Sitter (AdS) spacetime. The dual SCFT lives at the boundary of the AdS spacetime, and properties such as symmetries of the SCFT are captured in terms of the gravity solution (both in the geometry as well as the fluxes). This part of the project will explore the manifestation of the different global choices of gauge groups and other higher form symmetry structures in the context of these holographic dualities. The key advantage to this framework is that it allows us to study such symmetries in the strong coupling regime of quantum field theories. The methodology will draw from a variety of areas of mathematical physics: perturbative quantum field theory methods, geometric engineering, as well as holographic dualities. This utilizes both insights from physics as well as mathematics, in particular geometry and topology. Surprisingly, given their fundamental nature, higher form symmetries have a relatively short history dating back to the seminal paper in 2014, by Gaiotto, Kapustin, Seiberg and Willett. The analysis of generalized symmetries in higher dimensions has in fact only been initiated recently, and is a very active and exciting field of research. This project falls within the EPSRC Mathematical Physics research area.
本计画的目标是全面分析量子场论在不同维度上的高形式对称性。高等形式的对称性概括了在量子场论和数学物理中广泛研究的“普通”对称性的概念。普通对称有由局部算子和余维为1的拓扑电荷算子给出的带电对象。这个概念可以扩展到更高维度的带电物体来描述更高形式的对称。许多标准结果延续到这种推广,但更广泛的范围也允许通过研究理论的高级形式对称性来获得新的物理见解。我们将特别关注具有超对称性的共形不变理论。这些将从6d超共形理论(SCFTs)开始研究,该理论在降维和rg流的基础上产生更低维的SCFTs。该项目将重点研究更高形式的对称性与维度减少之间的关系,特别是从6d到5d/4d/3d。此外,高级对称的研究还需要分析这种全局对称的t - Hooft异常,以及高级对称之间的混合异常。为了补充这种场论方法,该项目还将分析scft全息对偶描述中更高形式对称性的印记。从反德西特(AdS)时空的双重引力理论来看,全息术已经成为研究强耦合scft的一个框架。对偶SCFT存在于AdS时空的边界上,并且SCFT的对称性等性质是根据重力解(在几何和通量方面)捕获的。项目的这一部分将探索在这些全息对偶性的背景下,规范群和其他更高形式对称结构的不同全局选择的表现形式。该框架的关键优势在于它允许我们在量子场论的强耦合状态下研究这种对称性。该方法将借鉴数学物理的各个领域:微扰量子场论方法,几何工程,以及全息对偶性。这既利用了物理学的见解,也利用了数学的见解,特别是几何和拓扑。令人惊讶的是,考虑到高等形式对称性的基本性质,它的历史相对较短,可以追溯到2014年Gaiotto、Kapustin、Seiberg和Willett发表的一篇开创性论文。高维广义对称的分析实际上是最近才开始的,是一个非常活跃和令人兴奋的研究领域。该项目属于EPSRC数学物理研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Scattering in Quantum Gravity: Symmetries and Holography
量子引力中的散射:对称性和全息术
  • 批准号:
    2310633
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Generalized Symmetries in Quantum Field Theory and Quantum Gravity
量子场论和量子引力中的广义对称性
  • 批准号:
    EP/X028291/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
New Symmetries in Quantum Field Theory
量子场论中的新对称性
  • 批准号:
    2780815
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
ExpandQISE: Track 1: Exceptional entanglement transition and supersensitive quantum sensing empowered by anti-Hermiticity and symmetries
ExpandQISE:轨道 1:反厄米性和对称性支持的出色纠缠跃迁和超灵敏量子传感
  • 批准号:
    2329027
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding quantum systems with higher symmetries
理解具有更高对称性的量子系统
  • 批准号:
    RGPIN-2017-05371
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Homological Techniques in Quantum Symmetries
RUI:量子对称性中的同调技术
  • 批准号:
    2201146
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Interagency Agreement
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
C*-dynamics, quantum equilibrium, and symmetries
C*-动力学、量子平衡和对称性
  • 批准号:
    RGPIN-2017-04052
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了