Toward Automated Video Quality Assessment of Ultrasound
超声自动化视频质量评估
基本信息
- 批准号:2431522
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project ContextTraditionally the literature on medical image analysis considers image-based diagnostics (interpreting a captured image). Ultrasound image analysis is different as there is less focus on the image, and more on video processing. Ultrasound imaging is also an interactive real-time imaging technique where video can be cheaply re-taken. Human experts quickly learn how to retake a video if it is sub-optimal or not "fit-for-purpose". Computers are yet to be able to mimic this human capability. This project seeks to investigate deep learning-based video analysis algorithms to advance automated ultrasound video quality assessment towards a generalisable solution more akin to human-like expert behaviour.Aims and ObjectivesWe have two large real-world datasets available for this research which will allow us to look at ultrasound video quality assessment from different perspectives. The first is the PULSE dataset which is a large-scale multi-modal freehand datasets of ultrasound video, gaze tracking data, and probe motion data acquired while sonographers perform fetal screening scans. The second dataset is from a basic pregnancy ultrasound study where sonographers have acquired data at two sites following a simple scanning protocol consisting of pre-defined linear sweeps (called the CALOPUS ultrasound protocol (CUP)).We will use the PULSE multi-modal dataset to study the criteria that human experts use to determine video quality in practice. This will provide insight into the computational criteria that will need to be embedded in a general deep learning model of video QA. We will use the CALOPUS dataset to define the training and test data for the developed video QA models. We will start with simple requirements like "the video is good quality if the fetal head is present". We will then move on to more general requirements such as "the video is good quality if all anatomical structures are clear enough". However, we do not want to build a bespoke solution for every task as this is tedious to do, so our deep learning designs will need to be increasingly "intelligent" and will aim to utilise some of the latest computer vision ideas in their design so that ideally manual annotation is not needed for training (self-supervision), models learn to be generalisable to new unseen tasks (domain adaptation) and they are ideally explainable. The doctoral research will thus progressively explore developing and testing a family of deep learning-based ultrasound video quality assessment methods that are more general.Novelty and ImpactThis research will advance understanding of automated video analysis algorithms with a domain focus on healthcare imaging. Automated ultrasound video quality assessment would be a transformational technology to simplify ultrasound and make it an accessible technology for a wider range of clinical professionals in high-income and low-and-middle-income countries.Alignment with EPSRC ThemesThis project falls within the EPSRC healthcare technologies, ICT and artificial intelligence and robotics research areas
项目背景传统上,有关医学图像分析的文献考虑基于图像的诊断(解释捕获的图像)。超声图像分析则不同,它较少关注图像,而更多关注视频处理。超声成像也是一种交互式实时成像技术,可以廉价地重新拍摄视频。如果视频不理想或不“适合目的”,人类专家很快就会学会如何重新拍摄视频。计算机还无法模仿人类的这种能力。该项目旨在研究基于深度学习的视频分析算法,以推进自动化超声视频质量评估,形成更类似于人类专家行为的通用解决方案。目的和目标我们有两个大型现实世界数据集可用于这项研究,这将使我们能够从不同的角度看待超声视频质量评估。第一个是 PULSE 数据集,它是超声检查人员执行胎儿筛查扫描时获取的超声视频、注视跟踪数据和探头运动数据的大规模多模式徒手数据集。第二个数据集来自一项基本的妊娠超声研究,其中超声检查人员遵循由预定义线性扫描组成的简单扫描协议(称为 CALOPUS 超声协议 (CUP))在两个站点获取数据。我们将使用 PULSE 多模态数据集来研究人类专家在实践中用于确定视频质量的标准。这将深入了解需要嵌入视频 QA 的通用深度学习模型中的计算标准。我们将使用 CALOPUS 数据集来定义开发的视频 QA 模型的训练和测试数据。我们将从简单的要求开始,例如“如果胎头存在,则视频质量良好”。然后我们将转向更一般的要求,例如“如果所有解剖结构足够清晰,则视频质量良好”。然而,我们不想为每项任务构建定制的解决方案,因为这样做很乏味,因此我们的深度学习设计需要越来越“智能”,并致力于在设计中利用一些最新的计算机视觉思想,以便理想情况下不需要手动注释进行训练(自我监督),模型学习可推广到新的未见过的任务(领域适应),并且理想情况下它们是可解释的。因此,博士研究将逐步探索开发和测试一系列更通用的基于深度学习的超声视频质量评估方法。新颖性和影响这项研究将增进对医疗成像领域自动视频分析算法的理解。自动超声视频质量评估将是一项变革性技术,可简化超声检查,使其成为高收入和中低收入国家更广泛的临床专业人员可使用的技术。与 EPSRC 主题保持一致该项目属于 EPSRC 医疗保健技术、ICT 以及人工智能和机器人研究领域
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Automated monitoring of health and welfare in groups of pigs using evidential reasoning and video-analytics
使用证据推理和视频分析自动监测猪群的健康和福利
- 批准号:
2886810 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An automated approach for video-based motor assessment in Parkinson's disease
帕金森病基于视频的运动评估的自动化方法
- 批准号:
10572002 - 财政年份:2023
- 资助金额:
-- - 项目类别:
From Human-Powered to Automated Video Description for Blind and Low Vision Users
针对盲人和低视力用户的从人力到自动视频描述
- 批准号:
10568469 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Advanced video analysis for automated feature identification on Special Nuclear Materials (SNM) packages
用于特殊核材料 (SNM) 封装自动特征识别的高级视频分析
- 批准号:
2897614 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An innovative automated script-writing tool using ML that could save SMEs and self-employed creators hours in video production
一种使用机器学习的创新自动化脚本编写工具,可以节省中小企业和个体创作者的视频制作时间
- 批准号:
10029554 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
SBIR Phase I: Automated processing of images and video for wildlife conservation
SBIR 第一阶段:用于野生动物保护的图像和视频自动处理
- 批准号:
2126184 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Automated Medication Platform with Video Observation and Facial Recognition to Improve Adherence to Antiretroviral Therapy in Patients with HIV/AIDS
具有视频观察和面部识别功能的自动化用药平台,可提高艾滋病毒/艾滋病患者抗逆转录病毒治疗的依从性
- 批准号:
10256239 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Preventing Medication Mismanagement in People Living with Dementia through Automated Medication Dispensing with Facial Recognition and Video Observation
通过面部识别和视频观察自动配药,防止痴呆症患者用药管理不善
- 批准号:
10461514 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Automated Video Monitoring Algorithm Development to Reduce Falls in Hospitals from Chair Exits - I-Corps Program
自动视频监控算法开发可减少医院从椅子出口跌倒的情况 - I-Corps 计划
- 批准号:
10303495 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Automated measurement of stress scores in video recordings of laboratory animals
自动测量实验动物视频记录中的压力分数
- 批准号:
441567598 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Units