Noncommutative Differential Geometry
非交换微分几何
基本信息
- 批准号:2436235
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Noncommutative differential geometry is related to algebra, geometry and functional analysis, though in this project we will begin from the idea of differential calculi. It has applications to physics, finite geometries, Hopf algebras and C* algebras among other areas. The principle is to produce as many noncommutative analogues of classical geometrical results and their applications as possible, as well as considering ideas which only make sense in a noncommutative world.The links with the standard theory of C* algebras are most easily seen through unbounded operators (Connes' Dirac operators) and states,where the KSGNS construction from Hilbert C* modules is combined with connections on bimodules to give evolution on state spaces. As physical field theories and cosmological models are stated using calculus, the idea of calculi in noncommutative differential geometry has been extensively used in Physics. Noncommutative symmetries have been described using Hopf algebras and, more recently, Hopf algebroids.There are three main lines of enquiry for the current project, and the aim is to provide detailed theory and examples for new approaches and new applications in at least one of the following areas:1) Noncommutative algebraic topology, especially sheaf cohomology, spectral sequences and homotopy theory. There is already a good definition of noncommutative fibration, but not of cofibration. There are many missing pieces, such as a non-differential definition of sheaf and integer valued cohomology, for which the noncommutative analogues are still missing. Quillen's ideas of model categories have been very useful in many aspects of topology and category theory, and it is hoped that they will provide the insight necessary for noncommutative algebras with calculi.2) Hermitian inner products and states, linking to C* algebras. This leads to dynamics (given bimodule connections on Hilbert C* modules) and links to theoretical physics and quantum theory. It is known that standard quantum mechanics (in the form of the Schrodinger equation) can be cast in the form of a geodesic type motion for the Heisenberg algebra. Given Connes' noncommutative interpretation of the standard model using Dirac operators, this raises the question of whether there might also be a geodesic type interpretation for a quantum field theory. There is also the problem of whether differential calculi fit into the study of the many C* algebras (such as Cuntz algebras) which seem to be a long way from differentiable manifolds, and this will inevitably connect to K-theory. (Regarding K-theory, characteristic classes in noncommutative geometry can be defined both by Connes' cyclic cohomology and by a direct implementation of Chern's ideas.)3) Symmetries implemented by differentiable actions or coactions of Hopf algebras or Hopf algebroids. This also connects to noncommutative vector fields and possibly complex structures, for analytic symmetries. This may include quantum integrable models (this would definitely require complex structures and possibly a generalisation of the idea of Hopf algebra). The application of Hopf algebroids in this direction is quite new, and there are differential aspects of this theory in the presence of calculi which are still to be worked out.The methodology is to follow and then to extend the ideas of quantum differential calculi, which are a direct extension to the noncommutative world of classical differential geometry. The obvious place to start is by reading the recent (2020) book `Quantum Riemannian Geometry' by Beggs and Majid. This would be followed by looking at the application areas listed, including the corresponding classical theory as well as the relevant existing noncommutative theory, and then following the most promising ideas for extending these application areas.
非交换微分几何与代数、几何和泛函分析有关,尽管在这个项目中我们将开始从微分微积分的概念开始。它在物理学、有限几何、Hopf代数和C* 代数等领域都有应用。其原则是尽可能多地产生经典几何结果的非交换类似物及其应用,同时考虑只有在非交换世界中才有意义的思想。与C* 代数标准理论的联系最容易通过无界算子看出(Connes' Dirac算子)和状态,其中从Hilbert C* 模的KSGNS构造与双模上的连接相结合,以给出状态空间上的演化。由于物理场论和宇宙学模型都是用微积分来表述的,非对易微分几何中的微积分思想在物理学中得到了广泛的应用。非交换对称性已经用Hopf代数和最近的Hopf代数胚来描述了。目前的项目有三个主要的研究方向,目的是为以下至少一个领域的新方法和新应用提供详细的理论和例子:1)非交换代数拓扑,特别是层上同调,谱序列和同伦理论。非对易纤维化已经有了一个很好的定义,但上纤维化还没有。有许多缺失的部分,如层的非微分定义和整数值上同调,其中的非交换类似物仍然缺失。奎伦的模型范畴的思想在拓扑学和范畴论的许多方面都非常有用,人们希望它们能为非交换代数提供必要的见解。这导致了动力学(给定希尔伯特C* 模上的双模连接)和理论物理学和量子理论的联系。已知标准量子力学(以薛定谔方程的形式)可以转换为海森堡代数的测地线型运动的形式。鉴于康纳斯使用狄拉克算子对标准模型的非对易解释,这就提出了一个问题,即量子场论是否也可能有测地线类型的解释。还有一个问题是,微分微积分是否适合研究许多C* 代数(如Cuntz代数),这些代数似乎离可微流形很远,这将不可避免地与K理论联系起来。(关于K-理论,非对易几何中的特征类可以由康纳斯的循环上同调和陈省身思想的直接实现来定义。3)由Hopf代数或Hopf代数胚的可微作用或余作用实现的对称。这也与非对易向量场和解析对称的可能的复杂结构有关。这可能包括量子可积模型(这肯定需要复杂的结构,并可能推广霍普夫代数的思想)。霍普夫代数体在这个方向上的应用是相当新的,在微积分的存在下,这个理论的微分方面仍然有待解决。方法是遵循然后扩展量子微分微积分的思想,这是对经典微分几何的非对易世界的直接扩展。最明显的起点是阅读Beggs和Majid最近(2020年)出版的《量子黎曼几何》一书。接下来是查看列出的应用领域,包括相应的经典理论以及相关的现有非对易理论,然后遵循扩展这些应用领域的最有前途的想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
- 批准号:
RGPIN-2017-04249 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development from Poisson Geometry to Noncommutative Differential Geometry via Integrating of Geometry and Physics
几何与物理的结合从泊松几何发展到非交换微分几何
- 批准号:
18204006 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
- 批准号:
0604552 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
- 批准号:
0703775 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant