The Role of Neural Models in (Constrained) Natural Language Generation Built on the mathematical foundations laid out by Markov [1], n-gram language

神经模型在(受限)自然语言生成中的作用建立在马尔可夫 [1] n-gram 语言奠定的数学基础之上

基本信息

  • 批准号:
    2438674
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Built on the mathematical foundations laid out by Markov [1], n-gram language models endow a word with a probability distribution that depends on its context (the n words preceding it). While these models led to advances in language technologies as diverse as speech recognition [2] and machine translation [3, 4], the cardinality of their parametrisation grows exponentially with the context length. This limits their applicability. Recurrent neural networks can model arbitrary length contexts [5], which led to the widespread adoption of these models in many language tasks [6]. Overcoming the computational efficiency limitations of recurrent architectures, the neural "transformer" architecture proposed in [7] led to development of a range of neural language models that achieve state-of-the-art performance in a variety of natural language tasks [8, 9, 10].This project aims to advance artificial intelligence (AI) based technologies for natural language by investigating how neural language models can be employed to incorporate user goals in natural language generation. Such goals might be expressed through interaction with the system, as is the case in conversational AI. Inspired by recent developments in the field where neural models have been employed to replace complex model pipelines [11, 12, 13], the project will explore and provide novel methods that will allow these systems to: better estimate, track and ground their output in user intent be adapted or self-adapt to satisfy new user goalsGoals might also be expressed through constraints that a language engineer would like to embed in the generation task. For example, generation of gender inflections in languages where the latter depends on the social gender of a human referent is challenging for state-of-the-art automatic translation systems [14] and recent work has shown that embedding such constraints in neural models is non-trivial [15]. Solving this problem extends beyond gender bias mitigation, as similar approaches might be pursued to constrain neural systems to generate gender-neutral translations. This project aims to take a broad approach to advancing state-of-the-art in user-constrained language generation, investigating: appropriate data sources and their optimal representation architectural changes necessary to accommodate new/richer input data representations new training methodologies, including novel objectives and training in conjunction with other systems novel decoding processes that account for constraints adaptation techniquesReferences[1] Markov, A. A. (1913). Essai d'une recherche statistique sur le texte du roman "Eugene Onegin" illustrant la liaison des epreuve en chain ('Example of a statistical investigation of the text of "Eugene Onegin" illustrating the dependence between samples in chain'). Izvistia Imperatorskoi Akademii Nauk (Bulletin de l'Academie Impériale des Sciences de St.-Pétersbourg), 7, 153-162.[2] Povey, D., & Woodland, P. C. (2002, May). Minimum phone error and I-smoothing for improved discriminative training. In 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 1, pp. I-105). IEEE.[3] Chiang, D. (2005, June). A hierarchical phrase-based model for statistical machine translation. In Proceedings of the 43rd annual meeting of the association for computational linguistics (ACL'05) (pp. 263-270).[4] de Gispert, A., Iglesias, G., Blackwood, G., R. Banga, E., & Byrne, W. (2010). Hierarchical phrase-based translation with weighted finite-state transducers and shallow-n grammars. Computational linguistics, 36(3), 505-533.[5] Mikolov, T., Karafiát, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association (pp. 1045-1048).[6] Jurafsky, D., &, Martin, J. H., (n.d). Sequence Processing with Neural Networks. In Speech and Language Processing: An Introd
建立在马尔科夫[1]奠定的数学基础上的n元语法语言模型赋予单词依赖于其上下文(它之前的n个单词)的概率分布。虽然这些模型导致了语言技术的进步,如语音识别[2]和机器翻译[3,4],但它们的参数化基数随着上下文长度的增加而指数增长。这限制了它们的适用性。递归神经网络可以模拟任意长度的上下文[5],这导致这些模型在许多语言任务中被广泛采用[6]。为了克服递归结构的计算效率限制,[7]中提出的神经“转换器”结构导致了一系列神经语言模型的开发,这些模型在各种自然语言任务中实现了最先进的性能[8,9,10]。该项目旨在通过研究如何利用神经语言模型在自然语言生成中融入用户目标来促进基于人工智能(AI)的自然语言技术的发展。这样的目标可能通过与系统的交互来表达,就像对话式人工智能中的情况一样。在神经模型被用来取代复杂模型管道的领域的最新发展的启发下,该项目将探索并提供新的方法,使这些系统能够:更好地估计、跟踪和定位它们在用户意图中的输出,或自适应以满足新的用户目标目标也可以通过语言工程师想要嵌入到生成任务中的约束来表达。例如,在依赖于人类指代的社会性别的语言中生成性别变化对于最先进的自动翻译系统来说是具有挑战性的[14],最近的工作表明,在神经模型中嵌入这种限制是不容易的[15]。解决这个问题不仅仅是缓解性别偏见,因为可以采取类似的方法来约束神经系统产生性别中立的翻译。这个项目旨在采取广泛的方法来推进用户受限语言生成的最新技术,调查:适当的数据源及其最佳表示为适应新的/更丰富的输入数据表示所需的体系结构变化新的训练方法,包括新的目标和与其他系统结合的训练考虑约束适应技术的新的解码过程参考[1]马尔科夫,A.A.(1913)。ESAI d‘une recherche统计学Sur le Text Du Roman“尤金·奥涅金”插图《Epreuve en Chain》(《尤金·奥涅金》文本的统计调查举例说明了链中样本之间的依赖关系》)。Izvistia Imperatorskoi Akademii Nauk(L的科学研究院公报),7,153-162.[2]波维,D.和伍德兰,P.C.(2002年5月)。最小的音素误差和i-平滑,以改进区分训练。2002年IEEE声学、语音和信号处理国际会议(第1卷,第I-105)。IEEE.[3]Chiang,D.(2005,6月)。一种基于层次短语的统计机器翻译模型。收录于《计算语言学协会第43届年会论文集》(ACL‘05)(第263-270页)[4]de Gispert,A.,Iglesias,G.,Blackwood,G.,R.Banga,E.,&Byrne,W.(2010)。基于加权有限状态换能器和浅n文法的分级短语翻译。计算语言学,36(3),505-533.[5]Mikolov,T.,Karafiát,M.,Burget,L.,Cernocky,J.,&Khudanpur,S.(2010).基于递归神经网络的语言模型。《国际语言交流协会第十一届年会》(第1045-1048页)[6]Jurafsky,D.,&,Martin,J.H.,(N.D.)用神经网络进行序列处理。语音和语言处理:导论

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
uFACT: Unfaithful Alien-Corpora Training for Semantically Consistent Data-to-Text Generation
  • DOI:
    10.18653/v1/2022.findings-acl.223
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tisha Anders;Alexandru Coca;B. Byrne
  • 通讯作者:
    Tisha Anders;Alexandru Coca;B. Byrne
GCDF1: A Goal- and Context- Driven F-Score for Evaluating User Models
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
  • 批准号:
    2338833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
  • 批准号:
    2412147
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
  • 批准号:
    2418125
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural basis of gambling addiction and establishment of the treatment for translational models
赌博成瘾的神经基础及转化模型治疗的建立
  • 批准号:
    22KJ1769
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311469
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
  • 批准号:
    2312102
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了