Augmentation of Accuracy for Image-guided Neurosurgery

提高图像引导神经外科手术的准确性

基本信息

  • 批准号:
    6802225
  • 负责人:
  • 金额:
    $ 15.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-30 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The ultimate goal of this work is to increase the success rate of the microelectrode-guided surgery and consequently improve the quality of life of patients suffering from movement disorders. To achieve this goal, methods are proposed to augment the navigational accuracy of the surgery without interfering with standard portions of the procedure. To successfully target a specific brain location (e.g. the best location for implantation of a permanent stimulating electrode), one needs to accurately know the boundaries of the neighboring structures of interest (in this case: Basal Ganglia, Thalamus, Sub-thalamus, optic tract). In the standard procedure, these boundaries are obtained from a brain atlas. However, the accuracy of the 3rocedure is adversely affected by: the shape and size difference in anatomy of the brain atlas and of the 3atient, and by intraoperative brain deformation. To address these problems the following aims are proposed: AIM 1. Available brain atlases will be explored and the highest-resolution one will be selected. A method for building 3D surface models of the structures of interest from the atlas images will be designed. The atlas will be represented by its images stacked into a 3D image volume and by a collection of 3D surface models. AIM 2. A highly accurate method for nonrigid alignment of the atlas 3D image and the patient's preoperative MR scan will be developed. This alignment will be applied to the atlas models to adjust their position, shape, and size. This will bring the models into registration with the patient MR scan making them patient specific. AIM 3. The locations of boundaries between structures of interest along the microelectrode tracks are recorded intraoperatively. This information will be used to fine-tune the patient specific models in order to make them more accurate. AIM 4. The intraoperative brain deformation will be analyzed, its affect on the accuracy of the microelectrode-guided surgery will be investigated, and methods for its compensation will be explored. AIM 5. The proposed methods will be clinically tested on 50 cases of microelectrode-guided surgery. Although the proposed methods will be applied to the microelectrode-guided surgery, they can be extended to other image-guided neurosurgical procedures, including tumor removal and epilepsy surgery.
描述(由申请人提供): 这项工作的最终目的是提高微电极引导手术的成功率,从而改善运动障碍患者的生活质量。为了实现这一目标,提出了在不干扰手术标准部分的情况下增加手术导航精度的方法。为了成功地定位特定的大脑位置(例如,植入永久性刺激电极的最佳位置),需要准确地知道邻近感兴趣结构的边界(在这种情况下:基底节、丘脑、下丘脑、视束)。在标准程序中,这些边界是从脑图谱中获得的。然而,其准确性受到以下因素的不利影响:脑图谱和解剖结构的形状和大小的差异,以及术中脑变形。为了解决这些问题,提出了以下目标:目标1.将探索可用的脑地图集,并选择分辨率最高的地图集。将设计一种从地图集图像中建立感兴趣结构的3D表面模型的方法。地图集将由堆叠成3D图像体积的图像和3D表面模型的集合来表示。目的2.将开发一种高精度的方法,将枢椎3D图像与患者的术前MR扫描进行非刚性对齐。此对齐将应用于atlas模型以调整其位置、形状和大小。这将使模型与患者MR扫描进行配准,使它们具有患者特有的特征。目的3.术中记录术中沿微电极轨迹的感兴趣结构之间的边界位置。这些信息将被用来微调患者特定的模型,以使它们更准确。目的对术中脑变形进行分析,研究其对微电极引导手术准确性的影响,并探讨其补偿方法。目的5.在50例微电极引导手术中对所提出的方法进行临床验证。虽然所提出的方法将应用于微电极引导的手术,但它们也可以扩展到其他图像引导的神经外科手术,包括肿瘤切除和癫痫手术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OSKAR SKRINJAR其他文献

OSKAR SKRINJAR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OSKAR SKRINJAR', 18)}}的其他基金

Optimal Image Registration
最佳图像配准
  • 批准号:
    7340112
  • 财政年份:
    2007
  • 资助金额:
    $ 15.19万
  • 项目类别:
Optimal Image Registration
最佳图像配准
  • 批准号:
    7186196
  • 财政年份:
    2007
  • 资助金额:
    $ 15.19万
  • 项目类别:
Augmentation of Accuracy for Image-guided Neurosurgery
提高图像引导神经外科手术的准确性
  • 批准号:
    6736206
  • 财政年份:
    2003
  • 资助金额:
    $ 15.19万
  • 项目类别:
Augmentation of Accuracy for Image-guided Neurosurgery
提高图像引导神经外科手术的准确性
  • 批准号:
    6937098
  • 财政年份:
    2003
  • 资助金额:
    $ 15.19万
  • 项目类别:
Image Guided Constitutive Modeling of the Brain Tissue
图像引导脑组织本构建模
  • 批准号:
    6805611
  • 财政年份:
    2003
  • 资助金额:
    $ 15.19万
  • 项目类别:
Image Guided Constitutive Modeling of the Brain Tissue
图像引导脑组织本构建模
  • 批准号:
    6718142
  • 财政年份:
    2003
  • 资助金额:
    $ 15.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了