Pattern Recognition for Protein Crystallisation Strategies (AstraZeneca Crystal Atlas)

蛋白质结晶策略的模式识别(阿斯利康 Crystal Atlas)

基本信息

  • 批准号:
    2440749
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

AstraZeneca Crystal Atlas will implement deep learning and other machine learning methods to utilise all the data and knowledges from historical and ongoing crystallisation experiments to give insights into the complex relationships between compound, experiment conditions and outcomes. It will lead to more efficient crystallisation strategies for accelerating the drug discovery in AstraZeneca and the pharmaceutical industry.Crystallisation is a trial and error process, scientists do not have practical tools to easily correlate the hidden relationships between crystallogenesis conditions and their outcomes. In this proposal, we aim to create AstraZeneca crystal Atlas to reveal their complex relationships and improve future experiments, thus accelerate the drug discovery process.AstraZeneca Crystal Atlas is a comprehensive AI driven data and knowledge warehouse combing crystallisation inspection images, outcome labels, protein information and crystallogenesis experiment conditions. By using novel deep learning enabled Knowledge Graph and other data mining methods in AstraZeneca Crystal Atlas, scientists can identify the optimised pathway and reveal the patterns and graph relationships between entities to make better informed decisions for crystallisation strategies with high success rates.To achieve these, we will first aim to implement deep learning method (DL) to automate the annotations of crystallisation images. AstraZeneca crystallography team has accumulated a large amount of historical crystallisation images which are not systematically labelled. Visually inspecting and labelling these images is a time-consuming work and can be subjective and inconsistent.Therefore, we propose such an AI driven capability to auto-identify crystals. Deep Neural Networks (DNN) has achieved better accuracies than human experts in many image recognition tasks. MARCO, an DNN prototype from Google [1] shows the feasibility of automated crystallisation image classification. Nonetheless, our evaluation suggested its Page | 26Studentship Agreementpoor classification accuracy on AstraZeneca generated images, which indicates the importance of training a better DNN model using AstraZeneca datasets.Our primary study of creating a transfer learning model using DenseNet has achieved better image classification results than MACRO. We propose to adopt Active Learning (AL) [2] into the data training process, which will achieve better performance with only a fraction of the cost or time for data labelling. We will also utilise the rich information from UV images to achieve higher accuracy.The successful project would lead to an AstraZeneca Crystal Atlas which contains annotated crystallisation images, compounds or proteins, experiment conditions and the knowledge of their relationships. It will be searchable, explorable, and inferable using novel graph-based network [3, 4]. AstraZeneca Crystal Atlas will improve crystallisation success rate and accelerating the drug discovery process, and lead to high impact publications in i) active learning, ii) multiple-modality deep learning for crystallography profile exploration and iii) Graph inference on AstraZeneca Crystal Atlas to be published in scientific journals.Key References1. Bruno, Andrew E., et al. "Classification of crystallization outcomes using deep convolutional neural networks." PLOS one 13.6 (2018): e0198883.2. Zhou, Shusen, Qingcai Chen, and Xiaolong Wang. "Active deep learning method for semi-supervised sentiment classification." Neurocomputing 120 (2013): 536-546.3. Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv:1609.02907, ICLR 2017.4. Yang, Zhilin, William W. Cohen, and Ruslan Salakhutdinov. "Revisiting semi-supervised learning with graph embeddings." Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016.
AstraZeneca Crystal Atlas将实施深度学习和其他机器学习方法,利用历史和正在进行的结晶实验的所有数据和知识,深入了解化合物、实验条件和结果之间的复杂关系。这将导致更有效的结晶策略,以加速阿斯利康和制药行业的药物发现。结晶是一个反复试验的过程,科学家没有实用的工具来轻松地将晶体发生条件与其结果之间的隐藏关系联系起来。AstraZeneca Crystal Atlas是一个由人工智能驱动的综合数据和知识仓库,结合了结晶检测图像、结果标签、蛋白质信息和晶体发生实验条件,旨在通过构建AstraZeneca Crystal Atlas来揭示晶体之间的复杂关系,改善未来的实验,从而加速药物发现过程。通过使用AstraZeneca Crystal Atlas中的新型深度学习支持的知识图和其他数据挖掘方法,科学家可以识别优化的路径,揭示实体之间的模式和图形关系,从而为高成功率的结晶策略做出更明智的决策。为了实现这些目标,我们将首先实施深度学习方法(DL)来自动注释结晶图像。阿斯利康结晶学团队积累了大量未系统标记的历史结晶图像。视觉检查和标记这些图像是一项耗时的工作,并且可能是主观和不一致的。因此,我们提出了这样一种人工智能驱动的自动识别晶体的能力。深度神经网络(DNN)在许多图像识别任务中取得了比人类专家更好的准确性。MARCO,来自Google的DNN原型[1]显示了自动结晶图像分类的可行性。尽管如此,我们的评估表明,|26学生奖学金在AstraZeneca生成的图像上的分类准确性较差,这表明使用AstraZeneca数据集训练更好的DNN模型的重要性。我们使用DenseNet创建迁移学习模型的初步研究取得了比MACRO更好的图像分类结果。我们建议在数据训练过程中采用主动学习(AL)[2],这将实现更好的性能,而数据标记的成本或时间只有一小部分。我们还将利用紫外线图像的丰富信息来实现更高的准确性。成功的项目将导致阿斯利康晶体图谱,其中包含注释的结晶图像,化合物或蛋白质,实验条件以及它们之间的关系。它将是可搜索的,可探索的,并使用新的基于图形的网络推断[3,4]。AstraZeneca Crystal Atlas将提高结晶成功率并加速药物发现过程,并在i)主动学习,ii)用于结晶学图谱探索的多模态深度学习和iii)AstraZeneca Crystal Atlas的图形推理方面产生高影响力的出版物,并将在科学期刊上发表。Bruno,Andrew E.,使用深度卷积神经网络分类结晶结果。“PLOS one 13.6(2018):e0198883.2. Zhou,Shusen,Qingcai Chen,and Xiaolong Wang.“半监督情感分类的主动深度学习方法。“Neurocomputing 120(2013):536-546.3.基普夫,托马斯N.,还有麦克斯·威林“使用图卷积网络的半监督分类。arXiv:1609.02907,ICLR 2017.4.放大图片作者:William W.科恩和鲁斯兰·萨拉胡迪诺夫。“用图嵌入重新审视半监督学习。“Proceedings of the 33 rd International Conference on Machine Learning,纽约,纽约州,美国,2016.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于Recognition-VR 虚拟现实的“家庭-社区-医院三向联动”轻度认知障碍防治模式研究
  • 批准号:
    2021JJ60094
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Stratification of Protein Aggregation States based on Pattern Recognition for Screening Factors Controlling Phase Separation
基于模式识别的蛋白质聚集态分层控制相分离的筛选因素
  • 批准号:
    23H01995
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regulation of and Target Recognition by Protein Arginine Methyltransferase 1 (PRMT1)
蛋白质精氨酸甲基转移酶 1 (PRMT1) 的调节和目标识别
  • 批准号:
    10653465
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Analysis of Colletotrichum higginsianum recognition system by a novel ankyrin repeat-containing resistant protein
通过新型锚蛋白重复序列​​抗性蛋白分析炭疽菌识别系统
  • 批准号:
    23K05159
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of a cholesterol-recognition protein with anti-tumor activity via hedgehog pathway
通过刺猬通路设计具有抗肿瘤活性的胆固醇识别蛋白
  • 批准号:
    23K17209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
  • 批准号:
    10527903
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Advancing the Understanding of Protein-Protein Molecular Recognition Mechanisms Through the Use of Immunoglobulin A1 Proteases as Model Enzyme Systems
通过使用免疫球蛋白 A1 蛋白酶作为模型酶系统促进对蛋白质-蛋白质分子识别机制的理解
  • 批准号:
    558729-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
  • 批准号:
    10652635
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
  • 批准号:
    10889837
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Advancing the Understanding of Protein-Protein Molecular Recognition Mechanisms Through the Use of Immunoglobulin A1 Proteases as Model Enzyme Systems
通过使用免疫球蛋白 A1 蛋白酶作为模型酶系统促进对蛋白质-蛋白质分子识别机制的理解
  • 批准号:
    558729-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Functional analysis of pathogen effector recognition site of rice blast resistant protein
稻瘟病抗性蛋白病原效应子识别位点的功能分析
  • 批准号:
    21K20586
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了