Delegation of computation for machine learning
机器学习的计算委托
基本信息
- 批准号:2441131
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research falls into the areas of machine learning and quantum computing. Machine learning is ubiquitous in our daily lives, from Spotify recommendations to estimating how long your commute is going to take today. Delegating machine learning tasks to a more powerful third-party in the cloud (for example) offers the potential to make more difficult learning problems tractable, which is a very attractive prospect. At present, however, we blindly trust that the third-party in the cloud is doing a good job. This is fine for less sensitive tasks such as song recommendations, but is much less desirable in more sensitive situations. This research will aim to produce protocols that remove this need for blind trust,and instead allow us to verify that the the third-party has indeed done a sufficiently good job.We will aim to develop a theory of how to delegate machine learning, i.e. asking a powerful computer in the cloud to carry out a machine learning task for you. This will include the development of protocols which allow machine learning tasks to be delegated in a way which doesn't require trust, allowing us to verify that what the powerful computer in the cloud is telling us is in fact true. We will aim to produce protocols for this delegation which are transparent, privacy-preserving and post-quantum secure.This work is highly interdisciplinary, comprising the areas of cryptographic proofs and machine learning. This combination is a new direction of research. We will use deep technical tools from the theory of cryptographic proofs to approach the problem of delegating machine learning via novel methodologies.Delegating machine learning tasks to a more powerful computer is an attractive prospect. However, ideally, we would prefer not to have to trust that said powerful computer is doing a good job, and would rather have some way of verifying this fact for ourselves. The aim of this work is to produce protocols which remove this need for trust, and facilitate the delegation of machine learning tasks in a verifiable, transparent, privacy-preserving way. These protocols could immediately be applied to any delegated machine learning task in which it is important that the output is sufficiently high quality. Both sides stand to gain from this, as the side doing the verifying has a guarantee that what they are receiving is up to scratch, while the side doing the learning will now have the means to convince anyone that they are doing a good job.This work falls within the areas of machine learning and quantum information. It looks at these two areas with respect to the area of delegation of learning, which are priority areas for EPSRC, and it strives to make a significant industrial and societal impact.External Partner; StarkWare
这项研究属于机器学习和量子计算领域的福尔斯。机器学习在我们的日常生活中无处不在,从Spotify推荐到估计你今天的通勤时间。将机器学习任务委托给云中更强大的第三方(例如)提供了使更困难的学习问题易于处理的可能性,这是一个非常有吸引力的前景。然而,目前我们盲目地相信云计算中的第三方做得很好。这对于不太敏感的任务(如歌曲推荐)来说很好,但在更敏感的情况下就不太理想了。这项研究的目标是产生协议,消除这种盲目信任的需要,而是让我们能够验证第三方确实做得足够好。我们的目标是开发一种如何委托机器学习的理论,即要求云中的一台强大的计算机为您执行机器学习任务。这将包括开发协议,允许机器学习任务以不需要信任的方式进行委托,使我们能够验证云中强大的计算机告诉我们的内容实际上是真实的。我们的目标是为这个代表团制定透明,隐私保护和后量子安全的协议。这项工作是高度跨学科的,包括加密证明和机器学习领域。这种结合是一个新的研究方向。我们将使用密码学证明理论中的深层技术工具来解决通过新方法委托机器学习的问题。将机器学习任务委托给更强大的计算机是一个有吸引力的前景。然而,理想情况下,我们宁愿不相信说,强大的计算机正在做一个很好的工作,而宁愿有一些方法来验证这个事实为我们自己。这项工作的目的是制定消除信任需求的协议,并以可验证、透明、保护隐私的方式促进机器学习任务的委托。这些协议可以立即应用于任何委托的机器学习任务,其中输出足够高的质量是很重要的。双方都将从中受益,因为进行验证的一方可以保证他们接收到的是符合标准的,而进行学习的一方现在有办法说服任何人他们正在做得很好。这项工作福尔斯机器学习和量子信息领域。它着眼于这两个领域的学习授权领域,这是EPSRC的优先领域,它努力产生重大的工业和社会影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Improving aerosol and spray process computation fluid dynamics models with machine learning approaches
利用机器学习方法改进气溶胶和喷雾过程计算流体动力学模型
- 批准号:
2881557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Computation-assisted discovery of bioactive minor cannabinoids from hemp
计算辅助从大麻中发现生物活性次要大麻素
- 批准号:
10791213 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
- 批准号:
22KF0098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
- 批准号:
10644518 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Volumetric imaging and computation to characterize cardiac electromechanical coupling
体积成像和计算来表征心脏机电耦合
- 批准号:
10629905 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
- 批准号:
2208504 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant