Perception and Action: Ideal Observers and Actors
感知与行动:理想的观察者和行动者
基本信息
- 批准号:6930501
- 负责人:
- 金额:$ 30.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-08-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Biological visual systems make use of many different sources of information ("cues") for visual judgments. For depth and shape estimation, for example, these include occlusion, texture, perspective, motion parallax, disparity, shading and contour. The combination of these cues is based on the relative reliabilities of the individual cues, but cannot occur until cues are promoted to a commensurate scale by filling in one or more needed parameters (e.g., the fixation distance and azimuth for depth and slant estimates). These parameters are also estimated using multiple cues (e.g., both retinal and oculomotor cues for the viewing geometry). We propose statistical decision theoretic models for ideal behavior in the visual estimation of scene properties and for movement planning. The ideal observer or actor must take into account measurement uncertainty, associated with different outcomes, and prior information about the current state of the world. We propose experiments intended to clarify how human observers promote and combine cues for vision and for the visual control of action. The experimental methods used are based on perturbation analysis which permits examination of a system that can potentially react to distortions and inconsistencies in the stimuli. The proposed research consists of three major tasks. (1) We will analyze observer behavior relative to predictions of ideal Bayesian decision makers confronted by the same levels of uncertainty in tasks of perceptual decision, reaching and grasping. (2) We will examine cue combination in the service of cue promotion, again with reference to ideal behavior. (3) We will continue our studies of spatial interpolation performance so as to better understand such aspects of the underlying model as the prior distribution, and the methods used by the observer to be statistically robust (which, in this context, is closely related to the scene segmentation problem).
描述(由申请人提供):生物视觉系统利用许多不同的信息源(“线索”)进行视觉判断。例如,对于深度和形状估计,这些包括遮挡、纹理、透视、运动视差、视差、阴影和轮廓。这些提示的组合基于各个提示的相对可靠性,但只有通过填写一个或多个所需参数(例如,深度和倾斜估计的注视距离和方位角)将提示提升到相应的比例才能发生。这些参数也是使用多种线索(例如,用于观察几何形状的视网膜和动眼神经线索)来估计的。我们提出了统计决策理论模型,用于场景属性的视觉估计和运动规划中的理想行为。理想的观察者或行动者必须考虑与不同结果相关的测量不确定性以及有关世界当前状态的先验信息。我们提出的实验旨在阐明人类观察者如何促进和结合视觉线索和行动的视觉控制。使用的实验方法基于扰动分析,允许检查可能对刺激中的扭曲和不一致做出反应的系统。拟议的研究包括三项主要任务。 (1) 我们将分析与理想贝叶斯决策者的预测相关的观察者行为,他们在感知决策、到达和把握任务中面临相同程度的不确定性。 (2)我们将再次参考理想行为来检验为提示促进服务的提示组合。 (3)我们将继续研究空间插值性能,以便更好地理解基础模型的先验分布等方面,以及观察者使用的统计鲁棒性方法(在这种情况下,这与场景分割问题密切相关)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL S LANDY其他文献
MICHAEL S LANDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL S LANDY', 18)}}的其他基金
Perception and Action: Ideal Observers and Actors
感知与行动:理想的观察者和行动者
- 批准号:
7250124 - 财政年份:1989
- 资助金额:
$ 30.05万 - 项目类别:
Perception and Action: Ideal Observers and Actors
感知与行动:理想的观察者和行动者
- 批准号:
9336904 - 财政年份:1989
- 资助金额:
$ 30.05万 - 项目类别:
Perception and Action: Ideal Observers and Actors
感知与行动:理想的观察者和行动者
- 批准号:
7474253 - 财政年份:1989
- 资助金额:
$ 30.05万 - 项目类别:
Perception and Action: Ideal Observers and Actors
感知与行动:理想的观察者和行动者
- 批准号:
8297401 - 财政年份:1989
- 资助金额:
$ 30.05万 - 项目类别:














{{item.name}}会员




