Use of Artificial Intelligence to understand mountain weather and climate processes
利用人工智能了解山区天气和气候过程
基本信息
- 批准号:2442866
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore the potential of new data science approaches such as machine learning (ML) to develop understanding of complex flows over orography (hills and mountains) and improve their representation in models.The flow in mountainous regions is complex and poorly represented in global and weather and climate models. These flows have important effects on both the local weather and also by influencing the larger scale flow. For example, drainage currents affect the local conditions in mountain valleys, but also influence the turbulent exchange of heat, moisture and pollutants between the boundary layer and the free atmosphere across the larger mountain-range scales. The turbulence associated with breaking mountain waves is a dangerous hazard to aviation, but the process of wave breaking also imparts a drag force on the atmospheric flow, which affects the circulation on global scales.Current approaches (parametrizations) to representing these processes in models are based on simple theoretical concepts which are derived from highly idealised problems. Further advances are hampered by a lack of a theoretical framework to account for the complexity of the processes. Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) provide an exciting opportunity to make further progress. This is an area which is now being embraced by the atmospheric science community. A number of recent papers have begun to investigate the potential of Machine Learning approaches to the problem of parametrising convection, but currently there has been little work on parametrising the effects of orographic processes. The student will use cutting edge high-resolution model simulations (e.g. of flows over UK, the Rockies and Himalayas) combined with observations obtained in field experiments and new machine learning techniques to develop new physical understanding of orographic flow phenomena and to derive novel methods to represent their effects in weather and climate models. A range of phenomena will be considered, starting with those whose effects are known to be important but the complexity is such that they are not currently represented in weather and climate models (e.g. mountain lee-waves). Other phenomena which could be considered include drainage flows, valley cold pools, fog, turbulent rotors and orographic enhancement of precipitation. The results of the project will then be used to assess the potential for new forecasting techniques and new parametrizations.Key questions might include:- How can AI techniques be used to synthesise and classify large atmospheric data sets (either model or observational)?- Which Machine Learning approaches are most suitable for representing orographic processes?- How well do ML techniques compare to traditional downscaling techniques or high resolution models for providing detailed forecasts in mountain areas (e.g. local temperature and fog forecasts or orographic rainfall)?- How well do ML techniques compare to physically-based parametrisations or high resolution models in predicting the bulk effects of orography on the large scale e.g. the orographic drag exerted on the atmosphere).- Which inputs (both type and quantity of data) provide the best and most efficient predictors in each case?- How well do networks trained in one area of the world predict in other geographic areas?The fusion of data science with simulation is a key theme of the 2020-2030 Met Office Science Strategy and the student will benefit from the growing use of machine learning techniques at the Met Office, plus their world-leading expertise in weather and climate simulation. The student will be based in the School of Earth and Environment at the University of Leeds, which is also growing activity in this field, with strong links to the School of Computing and the Leeds Institute for Data Analytics.
该项目将探索机器学习(ML)等新的数据科学方法的潜力,以发展对地形(丘陵和山脉)上复杂流动的理解,并改善其在模型中的表示。山区的流动很复杂,在全球和天气气候模型中表现不佳。这些气流对当地天气和大尺度气流都有重要影响。例如,排泄流影响山谷的当地条件,但也影响较大山脉范围内边界层与自由大气之间热量、水分和污染物的湍流交换。与破碎的山波相关联的湍流对航空是一种危险的危害,但是波破碎的过程也会对大气流动产生拖曳力,从而影响全球尺度上的环流。目前在模型中表示这些过程的方法(参数化)是基于来自高度理想化问题的简单理论概念。由于缺乏理论框架来解释这些过程的复杂性,进一步的进展受到阻碍。人工智能(AI)和机器学习(ML)的最新进展为取得进一步进展提供了令人兴奋的机会。这是一个现在被大气科学界所接受的领域。最近的一些论文已经开始研究机器学习方法在参数化对流问题上的潜力,但目前在参数化地形过程影响方面的工作很少。学生将使用尖端的高分辨率模型模拟(例如英国,落基山脉和喜马拉雅山脉的流量),结合实地实验和新的机器学习技术中获得的观察结果,以开发对地形流现象的新物理理解,并获得新的方法来表示其在天气和气候模型中的影响。将考虑一系列现象,首先是那些已知影响重要但复杂性如此之大,目前无法在天气和气候模型中表示的现象(例如山区背风波)。可以考虑的其他现象包括排水流、山谷冷池、雾、湍流转子和地形对降水的增强。该项目的结果将用于评估新的预测技术和新的参数化的潜力。关键问题可能包括:-人工智能技术如何用于合成和分类大型大气数据集(模型或观测)?-哪些机器学习方法最适合表示地形过程?与传统的降尺度技术或高分辨率模型相比,ML技术在山区提供详细预报(例如当地温度和雾预报或地形降雨)方面表现如何?ML技术与基于物理的参数化或高分辨率模型相比,在预测大规模地形的整体影响(例如地形对大气的阻力)方面有多好。在每种情况下,哪些输入(数据的类型和数量)提供了最好和最有效的预测因子?在世界某个地区训练的网络在其他地理区域的预测效果如何?数据科学与模拟的融合是2020-2030年气象局科学战略的一个关键主题,学生将受益于气象局越来越多地使用机器学习技术,以及他们在天气和气候模拟方面的世界领先的专业知识。该学生将在利兹大学的地球与环境学院工作,该学院在这一领域的活动也越来越多,与计算学院和利兹数据分析研究所有着密切的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Investigating The Systemic Ethics of the Use of Artificial Intelligence in Bureaucratic Institutions
调查官僚机构使用人工智能的系统伦理
- 批准号:
2890594 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
A study on the use of artificial intelligence in serologic diagnostics for rickettsial infections
人工智能在立克次体感染血清学诊断中的应用研究
- 批准号:
23K15373 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Leveraging social determinants via artificial intelligence and peer coaching to address racial disparities in primary care among people who use opioids
通过人工智能和同伴辅导利用社会决定因素来解决阿片类药物使用者初级保健中的种族差异
- 批准号:
10829058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowship: STEMEdIPRF: Exploring the use of Artificial Intelligence in Science Communication: Promoting Identity Development and Equitable Student Learning
博士后奖学金:STEMEdIPRF:探索人工智能在科学传播中的使用:促进身份发展和公平的学生学习
- 批准号:
2327418 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Monitoring and prediction of biodiversity loss with the use of artificial intelligence
利用人工智能监测和预测生物多样性丧失
- 批准号:
2744960 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
The use of Artificial Intelligence and Robotics in Live Creative Installations
人工智能和机器人技术在现场创意装置中的应用
- 批准号:
2747984 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
The use of artificial intelligence (AI) to automate the Damage Rating Index (DRI) for the diagnosis of critical concrete infrastructure
使用人工智能 (AI) 自动化损坏评级指数 (DRI),以诊断关键混凝土基础设施
- 批准号:
566617-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
NSF Convergence Accelerator Track E: Empowering Stakeholders from Ship to Store--Solving Fishery Management Challenges with Use-Inspired Genomic and Artificial Intelligence Tools
NSF 融合加速器轨道 E:为从船舶到商店的利益相关者提供支持——利用受使用启发的基因组和人工智能工具解决渔业管理挑战
- 批准号:
2137766 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




