Self-triggered smart biomaterials
自触发智能生物材料
基本信息
- 批准号:2442958
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymeric biomaterials, which are typically synthetic substances introduced into body tissue as part of an implanted medical device or used to replace an organ or bodily function, are increasingly ubiquitous in healthcare. The introduction of biomaterials brings with it a risk of infection from microorganisms, representing a major risk to patients and burden to the NHS requiring extended, complex treatments, which are often unsuccessful. With infection rates approaching 100% in some devices, there is an urgent unmet need to develop ways to prevent bacterial biofilms forming on the surface of medical devices.Typically, infection involves initial attachment of bacteria to the surface of the biomaterial, followed by colonisation through subdivision and growth into a biofilm. This biofilm is highly resistant to treatment by antibiotics, and acts as a reservoir for further spread of infection in the body. This can lead to sepsis and death. To effectively address the problem of biofilm development in biomaterials, this project has two key aims in the development of smart materials-those which are responsive to a stimulus such as light (applied externally) or the onset of infection (where the stimulus is internal).Firstly, we seek to build on a previous EPSRC project, and some further recent results from our lab, which represents a new way to kill any bacteria which may still be able to attach to the polymer. This uses a combination of visible light and photosensitisers - a class of molecule which can use light to catalytically produce reactive oxygen, which is highly effective at killing bacteria. A key point in using this chemistry is that the range of active species are able to attack a wide range of targets in bacteria, rather than a single mode of action, which is a limitation of traditional approaches, such as antibiotics. As such, the approach gets round the issue of development of antimicrobial resistance, and has a long lived effect, which should allow it to be supported by clinicians in the future.In this strand, we will use synthetic chemistry, materials science and engineering methods in extrusion to develop new ways to incorporate photosensitisers at the direct point of bacterial attachment - the medical device surface. We will use multi-layered extrusion techniques to make thin coatings on substrates used to manufacture traditional medical devices, such as PVC. We will tune the efficiency of this system to maximise production of reactive oxygen, and carry out a full chemical and physical characterisation of the light-induced processes and how effectively they kill bacteria. Secondly, in a linked approach, we will build on interesting recent results which show we can use pH to control rate of cleavage of a model drug substance from a polymer suitable for use in medical device applications. A change in pH is observed at the onset of infection in urinary catheter infections in particular, so there is an opportunity to develop materials which are able to kill a bacterial infection in response to its own development, thereby stopping the infection in its tracks. Using synthetic chemistry, we will develop new 'building blocks' for polymers which can be used to make a responsive coating to a current medical device material. This will allow us to engineer polymers which are inherently able to resist the attachment of bacteria. In practice, this involves polymer synthesis to make our new candidate materials, then characterising their surface chemistry using a range of spectroscopic, microscopic and physical methods. We will then assess the ability of the materials to resist bacterial attachment by trying to grow biofilms of bacteria which typically cause infections.Together this will allow us to develop materials which may be incorporated in or on medical devices such as endotracheal tubes, urinary catheters, or intraocular lenses, which would have wide impact for patients and medical device companies.
聚合物生物材料通常是作为植入医疗器械的一部分引入身体组织或用于替代器官或身体功能的合成物质,在医疗保健中越来越普遍。生物材料的引入带来了微生物感染的风险,这对患者构成了重大风险,并给NHS带来了负担,需要长期复杂的治疗,但往往不成功。随着一些医疗器械的感染率接近100%,迫切需要开发防止细菌生物膜在医疗器械表面形成的方法。通常,感染涉及细菌最初附着在生物材料表面,然后通过细分和生长成生物膜而定殖。这种生物膜对抗生素治疗具有高度抗性,并作为体内感染进一步传播的水库。这可能导致败血症和死亡。为了有效地解决生物材料中生物膜发展的问题,该项目在智能材料的开发方面有两个关键目标-那些对光等刺激反应的材料(外部应用)或感染开始(其中刺激是内部的)。首先,我们寻求建立在以前的EPSRC项目,以及我们实验室最近的一些结果,这代表了一种杀死任何可能仍然能够附着在聚合物上的细菌的新方法。这种方法结合了可见光和光敏剂,光敏剂是一类可以利用光催化产生活性氧的分子,活性氧在杀死细菌方面非常有效。使用这种化学物质的一个关键点是,活性物质的范围能够攻击细菌中的各种靶标,而不是单一的作用模式,这是传统方法的局限性,如抗生素。因此,这种方法避免了抗生素耐药性的产生,并且具有长期的效果,这应该使它在未来得到临床医生的支持。在这一链中,我们将使用合成化学,材料科学和挤出工程方法来开发新的方法,将光敏剂引入细菌附着的直接点-医疗器械表面。我们将使用多层挤出技术在用于制造传统医疗器械(如PVC)的基材上制作薄涂层。我们将调整该系统的效率,以最大限度地产生活性氧,并对光诱导过程进行全面的化学和物理表征,以及它们如何有效地杀死细菌。其次,在一种相关方法中,我们将建立在最近有趣的结果基础上,这些结果表明我们可以使用pH值来控制模型原料药从适用于医疗器械应用的聚合物中裂解的速率。特别是在导尿管感染的感染开始时观察到pH的变化,因此有机会开发能够响应细菌感染自身的发展而杀死细菌感染的材料,从而阻止感染。使用合成化学,我们将开发新的聚合物“积木”,可用于制造当前医疗器械材料的响应涂层。这将使我们能够设计出固有地能够抵抗细菌附着的聚合物。在实践中,这涉及到聚合物合成,使我们的新候选材料,然后使用一系列光谱,显微镜和物理方法表征其表面化学。然后,我们将通过培养细菌生物膜来评估材料抵抗细菌附着的能力,这些细菌通常会引起感染。这将使我们能够开发出可用于气管内导管、导尿管或人工晶状体等医疗器械的材料,这将对患者和医疗器械公司产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Transformative Understanding of Rainfall-Triggered Landslides with Vegetation Effects from a Climate Change Perspective: Initiation and Consequences
职业:从气候变化的角度对降雨引发的山体滑坡及其植被影响进行变革性的理解:起因和后果
- 批准号:
2340657 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Corrosion triggered self-passivation of magnesium alloys
腐蚀引发镁合金的自钝化
- 批准号:
DP240101430 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Single cell level elucidation of local cell death-triggered regeneration mechanism in Arabidopsis
单细胞水平阐明拟南芥局部细胞死亡触发的再生机制
- 批准号:
24K17869 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular Mechanisms of Age-Related Skin Diseases Triggered by Age-Related Alterations in the Local Endocrine System of the Skin
皮肤局部内分泌系统年龄相关变化引发的年龄相关性皮肤病的分子机制
- 批准号:
23H03339 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Design and Development of Minimally-Invasive Orthopedic Fracture Fixation Using Intramedullary Sleeve and Injectable, Light-Triggered Bone Cement
SBIR 第一阶段:使用髓内套管和可注射光触发骨水泥的微创骨科骨折固定的设计和开发
- 批准号:
2322411 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Endocrine tissue molecular pathways dysregulated by immune checkpoint inhibitors causing ICI-triggered adverse events
免疫检查点抑制剂导致内分泌组织分子通路失调,导致 ICI 引发的不良事件
- 批准号:
10648465 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effector-triggered immunity against Legionella pneumophila in dendritic cells
树突状细胞中针对嗜肺军团菌的效应子触发免疫
- 批准号:
10753211 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Towards Personalized Prosthetic Graft Replacement for Genetically Triggered Thoracic Aortic Aneurysms
针对基因触发的胸主动脉瘤的个性化假体移植
- 批准号:
10753115 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
- 批准号:
10717809 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




