Boundary crossing problems for one-dimensional Markov processes to moving boundaries
一维马尔可夫过程移动边界的边界交叉问题
基本信息
- 批准号:2443857
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project is concerned with boundary crossing problems (BCPs) for various Markov processes. The goal is to find explicit and closed form solutions for random times such as first or last passage time distribution of stochastic processes hitting moving boundaries. Investigating such problems are both of practical and theoretical importance. Such problems arise in many fields of sciences such as mathematical physics, mathematical finance, neurology & etc. In the case of the Brownian motion, this is a classical problem, and explicit solutions can be derived for simple boundaries such as linear, square root or quadratic. The method of images enables us to derive such results for a more complicated set of boundaries and the goal is to extend such methods to other continuous or jump Markov processes (such as Levy processes) and find new family of curves such that explicit results can be obtained. We already published a manuscript titled "Boundary crossing problems and functional transformations for Ornstein-Uhlenbeck processes", were we investigated a two-parameter family of functional transformations and showed its connection to the first passage time (FPT) of Ornstein-Uhlenbeck(OU) type processes to time varying thresholds. Such a hitting time problem is of great interest, as the OU process has been used in many applications to model objects such as interest rates in finance or the evolution of the neuronal membrane voltages in neuroscience. The abstract and the paper itself can be found here (https://doi.org/10.48550/arXiv.2210.01658). Currently, we are interested in BCPs for jump process such as Spectrally negative Levy processes (a Levy process with no positive jumps) or generalized OU processes where instead of having a Brownian motion driving the process, we have a spectrally negative Levy process.
该项目关注的是各种马尔可夫过程的边界交叉问题(BCP)。目标是找到显式和封闭形式的解决方案,随机时间,如第一次或最后一次通过时间分布的随机过程击中移动边界。研究这些问题具有重要的理论意义和实践意义。这样的问题出现在许多科学领域,如数学物理学,数学金融学,神经学等的布朗运动的情况下,这是一个经典的问题,并明确解决方案可以推导出简单的边界,如线性,平方根或二次。图像的方法使我们能够得到这样的结果,为一个更复杂的边界集,目标是将这种方法扩展到其他连续或跳跃马尔可夫过程(如Levy过程),并找到新的曲线族,这样就可以得到明确的结果。我们已经发表了一篇题为“边界交叉问题和函数变换的Ornstein-Uhlenbeck过程”的手稿,我们研究了一个两参数的函数变换族,并显示了它与Ornstein-Uhlenbeck(OUH)型过程的首次通过时间(FPT)的联系。这样的命中时间问题是非常感兴趣的,因为在许多应用中,已经使用了随机过程来建模对象,例如金融中的利率或神经科学中的神经元膜电压的演变。摘要和论文本身可以在这里找到(https://doi.org/10.48550/arXiv.2210.01658)。目前,我们感兴趣的是跳跃过程的BCP,例如谱负Levy过程(没有正跳跃的Levy过程)或广义的BCPs过程,其中不是布朗运动驱动过程,而是谱负Levy过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Crossing the Finish Line: Intervening in a Critical Period for Educational Investment
冲过终点线:介入教育投资关键期
- 批准号:
2343873 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
- 批准号:
EP/Y027809/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Unobtrusive Technologies for Secure and Seamless Border Crossing for Travel Facilitation
用于安全、无缝过境的低调技术,为旅行提供便利
- 批准号:
10070292 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
The theoretical and practical study on the "boundary-crossing" nature of school education for social jusitice
学校社会正义教育“跨界”性的理论与实践研究
- 批准号:
23K02191 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phosphodiesterase 4B Inhibition as a Therapeutic Target for Alcohol-associated Liver Disease
磷酸二酯酶 4B 抑制作为酒精相关性肝病的治疗靶点
- 批准号:
10354185 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
- 批准号:
10667764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Utilizing Radiation-Induced Multi-potency to Increase the Efficacy of Radiotherapy
利用辐射诱导的多效性来提高放射治疗的功效
- 批准号:
10705985 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




