Creating Highly Stable Single Atom Catalysts on Porous Supports through Magnetron Sputtering

通过磁控溅射在多孔载体上制备高度稳定的单原子催化剂

基本信息

  • 批准号:
    2444678
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Project background (identification of the problem and its importance and relevance to sustainability) The need to replace fossil fuels with sustainable alternatives is understood to be one of the most pressing challenges for scientists today. There are multiple reasons for this: Fossil fuels are constantly being depleted, their linear lifecycle produces carbon dioxide and causes global warming, which produces a plethora of adverse environmental effects such as crop losses, ice cap melting and rising sea levels. One such alternative is hydrogen fuel, which is a sustainable alternative due to its circular economy and only producing water when burned. Hydrogen production is a hot topic in catalysis, and metal catalysts are crucial for this reaction, however these are often very expensive and rare, for example Platinum. This is a common predicament in catalysis, and the 2 main options are: Divert to more sustainable metals, or increase the activity of rare metal. Single atom catalysts (SACs) are a relatively new technology which has been shown to provide hugely increased activity for catalysts, touted as the 'next generation' of catalysts. The greatly improved activity compared to the classical supported metal catalysts is driven by 1 main trait; increased atom utilization. In heterogeneous catalysis only the surface atoms will be active, anything below the surface is wasted. As metal particle size decreases the proportion of atoms at the surface increases, therefore so does the atom utilisation. This yields greatly increased specific activity, as well as reported increases in selectivity. SACs provide 100% atom utilisation, as every atom is available for reaction, allowing the most effective and sustainable use of catalyst metals The main issue with SACs currently is their stability. SACs can quite easily leach into solution or sinter to create large particles, both of which are big problems for sustainable catalysis. Stabilising SACs with respect to this is the focus of my project, and is discussed in Proposed solution and methodology. The most popular method for synthesis of SACs is through co-precipiation and other wet chemistry methods, which is are wasteful processes. An innovative and sustainable method for SAC production is Magnetron sputtering, a solvent free method which directly deposits metal atoms onto a support while producing no waste. Proposed solution and methodology To address the issue of catalyst leaching and sintering, the catalyst particles must be stabilised on the support. In my project I will achieve this by tuning metal-organic frameworks to impart this stability. It is established that the high energy sites provided by defects allow for catalysts to anchor themselves more strongly, meaning that sintering and leaching occurs at a much slower rate. By introducing defects into MOFs during their synthesis and through post synthetic modification using argon plasma, I will create materials with specifically controlled defects (in both their defect type and quantity). To understand these defective MOFs, the main techniques used will be PXRD and TGA. After these defective MOFs have been created, metal deposition of metal catalyst will occur through magnetron sputtering. The methods will be tuned to create nanoclusters <2nm and SACs. These will then be applied to hydrogen production, where the metal atoms will be analysed after each reaction, primarily through the use of x-ray spectroscopy techniques. The results should show that by introducing defects, we are producing more robust SAC systems which can be re-used more times, which would hopefully be a step toward the eventual goal introduction of SACs on industrial scales.
项目背景(确定问题及其对可持续性的重要性和相关性)用可持续替代品取代化石燃料的必要性被认为是当今科学家面临的最紧迫挑战之一。这有多种原因:化石燃料不断耗尽,其线性生命周期产生二氧化碳并导致全球变暖,这产生了大量的不利环境影响,如作物损失,冰盖融化和海平面上升。其中一种替代品是氢燃料,由于其循环经济并且在燃烧时只产生水,因此是一种可持续的替代品。制氢是催化领域的一个热门话题,金属催化剂对此反应至关重要,但这些催化剂通常非常昂贵且稀有,例如铂。这是催化中常见的困境,两个主要的选择是:转向更可持续的金属,或增加稀有金属的活性。单原子催化剂(SACs)是一种相对较新的技术,已被证明可以大大提高催化剂的活性,被吹捧为“下一代”催化剂。与经典的负载型金属催化剂相比,大大提高的活性是由1个主要特征驱动的;增加的原子利用率。在多相催化中,只有表面原子是活性的,表面以下的任何原子都被浪费了。随着金属颗粒尺寸的减小,表面原子的比例增加,因此原子利用率也增加。这产生了大大增加的比活性,以及报道的选择性增加。SAC提供100%的原子利用率,因为每个原子都可用于反应,允许最有效和可持续地使用催化剂金属。SAC可以很容易地渗入溶液或烧结以产生大颗粒,这两者都是可持续催化的大问题。在这方面稳定SAC是我的项目的重点,并在建议的解决方案和方法中进行了讨论。目前最常用的合成SAC的方法是共沉淀法和其它湿化学法,这些方法都是浪费资源的方法。SAC生产的一种创新和可持续的方法是磁控溅射,这是一种无溶剂方法,直接将金属原子沉积到载体上,同时不会产生废物。 为了解决催化剂浸出和烧结的问题,催化剂颗粒必须稳定在载体上。在我的项目中,我将通过调整金属有机框架来实现这种稳定性。已经确定,由缺陷提供的高能量位点允许催化剂更强地锚自身,这意味着烧结和浸出以慢得多的速率发生。通过在合成过程中将缺陷引入到MOF中,并通过使用氩等离子体进行合成后改性,我将创建具有特定控制缺陷(缺陷类型和数量)的材料。为了了解这些有缺陷的MOF,使用的主要技术将是PXRD和TGA。在产生这些有缺陷的M0 F之后,将通过磁控溅射发生金属催化剂的金属沉积。这些方法将被调整以产生<2nm的纳米团簇和SAC。然后将这些应用于氢气生产,其中金属原子将在每次反应后进行分析,主要是通过使用X射线光谱技术。结果应该表明,通过引入缺陷,我们正在生产更强大的SAC系统,可以重复使用更多次,这有望成为最终目标在工业规模上引入SAC的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Stable and Highly Efficient Lead-Free Tin-based Perovskite Solar Cells
迈向稳定高效的无铅锡基钙钛矿太阳能电池
  • 批准号:
    23K23457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
  • 批准号:
    2329871
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development and Functionality Expansion of Highly Stable Multivalent Molecular Recognition Elements Based on Proteinaceous CutA1 Scaffold
基于蛋白质CutA1支架的高稳定多价分子识别元件的开发和功能扩展
  • 批准号:
    23K04508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra-Low-Cost and Highly-Stable Perovskite Solar Cells Based on Inorganic-Carbon Materials
基于无机碳材料的超低成本、高稳定性钙钛矿太阳能电池
  • 批准号:
    23KJ1175
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A novel highly stable pancreatic enzyme replacement therapy to improve outcomes for patients with pancreatic insufficiency.
一种新型高度稳定的胰酶替代疗法,可改善胰腺功能不全患者的预后。
  • 批准号:
    10543210
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of highly stable but cost-effective timing device for integrated circuits
开发高稳定且高性价比的集成电路计时器件
  • 批准号:
    570497-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    2306177
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fabrication, characterization and application of novel, highly stable, carbene-based self-assembled monolayers
新型、高度稳定的卡宾基自组装单分子层的制备、表征和应用
  • 批准号:
    RGPIN-2019-04038
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了