Generation of echocardiogram images for 3D image enhancement and localisation

生成超声心动图图像以进行 3D 图像增强和定位

基本信息

  • 批准号:
    2445174
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Echocardiography (Echo) is key to the assessment and management of all cardiac diseases. Echocardiograms are produced using ultrasound waves to create a moving picture of the heart. At the power levels used in the clinic, the use of sound waves is painless and harmless, and the devices required to generate them are low cost and portable which provides convenience [Potter]. These advantages of echocardiography contribute to its widespread clinical use today. 3D Echocardiography (3D Echo) allows the quantification of absolute cardiac chamber volumes and visualisation of the 3D structure and dynamic motion images of the heart, especially heart valve structures [Shiota]. It offers significant additional clinical information to traditional 2D echo, and has been identified as the best echocardiographic method for sequential quantification of left ventricle volumes and ejection fractions in patients with cancer undergoing chemotherapy. Moreover, unlike the 2D version, 3D echo is not reliant on plane positioning, does not require geometric modelling and does not make assumptions about the shapes of the chambers of the heart [Cheng], furthering its reproducibility and accuracy. However, the main limitation of 3D echo has been and still is the inferior image quality compared with today's 2D imaging technology [Lang]. Currently, the spatial resolution is limited by the number of beams and sweeps that the probe can send and receive. This limits lateral resolution specifically and as a result, also weakens image contrast. Higher resolution 3D images would enable more accuracy when calculating salient chamber volumes and improve the visualisation capabilities of this method. Attempts to improve image quality have mostly focused on changes to the transducer itself [Casas]. An important issue with the echo modality is that it is difficult to use without significant training and experience, especially in transoesophageal echocardiography (TEE) imaging. It can be difficult to know the probe's position and understand what exactly is being imaged. Automatic localisation of the probe would ease the process of performing TEE by helping the user identify the probe pose within the body. Furthermore, automatic localisation creates scope for more automation in performing the echo itself. For example, robotic actuators could be called on at certain stages of the echo to perform tasks that they would be better suited to compared to a medical professional. In order to tackle these issues, we plan to develop a pipeline that determines the probe's position and orientation, within the body, from 2D echo image inputs. This will be achieved by firstly developing an algorithm that, when given a 2D echo image, identifies its most likely location in a 3D anatomical model of the heart. Once developed, we will use this algorithm to predict the probe's position and orientation within the body, and hence develop methods to support 3D image guidance of TEE imaging, using 2D slices. Finally, in the final part of the DPhil we will use this pipeline to support the leveraging of the higher quality 2D echo images to enhance the 3D echo images, overcoming one of the main obstacles to 3D TEE. The methodologies used throughout the project will be mostly based on state-of-the-art machine learning tools, in particular Convolutional Neural Networks. This project is undertaken in partnership with GE Healthcare and falls within the EPSRC Medical Imaging research area. References Potter, A., Pearce, K., & Hilmy, N. (2019). The benefits of echocardiography in primary care. British Journal of General Practice, 69(684), 358-359. https://doi.org/10.3399/BJGP19X704513 Shiota, T. (2008). 3D echocardiography: The present and the future. Journal of Cardiology, 52(3), 169-185. https://doi.org/10.1016/J.JJCC.2008.09.004
超声心动图(Echo)是评估和管理所有心脏疾病的关键。超声心动图是利用超声波产生心脏的运动图像。在临床使用的功率水平下,声波的使用是无痛和无害的,并且产生它们所需的设备成本低且便携,这提供了便利[Potter]。超声心动图的这些优点有助于其广泛的临床应用。3D超声心动图(3D Echo)可量化绝对心腔容积,并可视化心脏的3D结构和动态运动图像,尤其是心脏瓣膜结构[Shiota]。它为传统的2D回波提供了重要的额外临床信息,并已被确定为接受化疗的癌症患者左心室容积和射血分数的顺序量化的最佳超声心动图方法。此外,与2D版本不同,3D回波不依赖于平面定位,不需要几何建模,也不对心脏腔室的形状进行假设[Cheng],进一步提高了其可重复性和准确性。然而,与当今的2D成像技术相比,3D回声的主要限制一直是并且仍然是图像质量较差[Lang]。目前,空间分辨率受到探头可以发送和接收的波束和扫描数量的限制。这特别限制了横向分辨率,因此也削弱了图像对比度。更高分辨率的3D图像将在计算显著腔室体积时实现更高的准确性,并提高该方法的可视化能力。改善图像质量的尝试主要集中在换能器本身的变化上[Casas]。超声心动图模式的一个重要问题是,在没有大量培训和经验的情况下难以使用,特别是在经食管超声心动图(TEE)成像中。很难知道探头的位置并理解正在成像的确切内容。探头的自动定位将通过帮助用户识别身体内的探头姿势来简化执行TEE的过程。此外,自动定位为执行回声本身的更多自动化创造了空间。例如,可以在回声的某些阶段调用机器人致动器来执行与医疗专业人员相比更适合的任务。为了解决这些问题,我们计划开发一个管道,从2D回波图像输入确定探头在体内的位置和方向。这将通过首先开发一种算法来实现,该算法在给定2D回波图像时,识别其在心脏的3D解剖模型中最可能的位置。一旦开发出来,我们将使用该算法来预测探头在体内的位置和方向,从而开发出使用2D切片支持TEE成像的3D图像引导的方法。最后,在DPhil的最后一部分,我们将使用此管道来支持利用更高质量的2D回波图像来增强3D回波图像,克服3D TEE的主要障碍之一。整个项目使用的方法将主要基于最先进的机器学习工具,特别是卷积神经网络。该项目是与GE Healthcare合作开展的,属于EPSRC医学成像研究领域,并且属于福尔斯。Potter,A.,皮尔斯,K.,& Hilmy,N.(2019年)。超声心动图在初级保健中的益处。British Journal of General Practice,69(684),358-359. https://doi.org/10.3399/BJGP19X704513 Shiota,T.(2008年)。3D超声心动图:现在和未来。Journal of Cardiology,52(3),169-185. https://doi.org/10.1016/J.JJCC.2008.09.004

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Analysis of the Pediatric Heart Network Echocardiogram Database to Establish Left Ventricular Strain Z-scores
分析儿科心脏网络超声心动图数据库以建立左心室应变 Z 评分
  • 批准号:
    10515976
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Analysis of the Pediatric Heart Network Echocardiogram Database to Establish Left Ventricular Strain Z-scores
分析儿科心脏网络超声心动图数据库以建立左心室应变 Z 评分
  • 批准号:
    10662569
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Looking at the Echo: A Post-Phenomenological Investigation into the Lived Experience of the Transthoracic Echocardiogram.
观察回声:对经胸超声心动图生活体验的后现象学调查。
  • 批准号:
    2757116
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of "cardiac function analysis system from echocardiogram" based on deep learning
基于深度学习的“超声心动图心功能分析系统”开发
  • 批准号:
    20K11953
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How close can an echocardiogram get to right heart function? -A study using a pulmonary hypertension model
超声心动图与右心功能有多接近?
  • 批准号:
    16K18800
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The prevalence and findings of subclinical influenza-associated cardiac abnormalities among Japanese patients.
日本患者中亚临床流感相关心脏异常的患病率和发现。
  • 批准号:
    15K09588
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Echocardiogram to Diagnose Pulmonary Hypertension in Premature Infants
超声心动图诊断早产儿肺动脉高压
  • 批准号:
    8891078
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
An association between atherosclerosis in the carotid ultrasonography and a novel risk factor of cardio-vascular diseases
颈动脉超声检查中动脉粥样硬化与心血管疾病新危险因素之间的关联
  • 批准号:
    16590525
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physiologic Responses of Pediatric Patients Following Echocardiogram Sedation
超声心动图镇静后儿科患者的生理反应
  • 批准号:
    7041682
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
The pathophysiology of cardiac and vascular remodeling and gene therapy
心脏和血管重塑的病理生理学和基因治疗
  • 批准号:
    12670684
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了