Accuracy of Diffuse Optical Tomography Using 3d camera
使用 3D 相机进行漫反射光学断层扫描的准确性
基本信息
- 批准号:6878614
- 负责人:
- 金额:$ 75.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-04-01 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Phase I
The primary objective of the SBR effort proposed herein is to investigate the feasibility of significantly enhancing the imaging capacity of diffuse optical tomography (DOT) technology by using a novel 3D image device to provide accurate three-dimensional (3D) geometric boundary conditions in non-contact-detection "3D DOT" systems. The 3D surface image also facilitates the DOT systems in multi-spectral image registration. A prototype of the novel 3D DOT system will be built in Phase2 program that integrates both 2D and 3D image function into single sensor unit, and provide four-channel multi-spectral imaging capability for in vivo diffuse optical tomography imaging applications. DOT in the near-infrared (NIR) has re-emerged as a promising imaging modality and dramatically improved our ability to localize and qualify tissue structures with light. However, the advanced DOT algorithm requires good knowledge of the boundary geometry of the diffuse medium imaged in order to provide accurate forward models of light propagation within this medium. Original experimental DOT demonstrations for reconstructing absorbers, scatterers and fluorochromes all used phantoms or tissues confined to easily modeled geometries such as a slab or a cylinder. In recent years several methods have been developed to model photon propagation through diffuse media with complex boundaries using Monte Carlo approaches, finite solutions of the diffusion or transport equation or more recently analytical methods based on the tangent-plane method. To fully exploit the advantages to these sophisticated algorithms, accurate 3D boundary geometry of the subject has to be extracted in practical, real-time, and in vivo manner.
To date, there is no known reported technique for extracting 3D dimensional boundaries with fully automated, accurate and real-time in vivo performance. We propose this SBIR project to address this need. The long-team goal of this research project is to develop a new optical tomography system that coherently combines the diffuse optical tomographic sensor/light source with real-time precision 3D surface images device so that the boundary geometry of the object to be imaged would be extracted almost simultaneously as the diffuse optical tomography imaging is performing. Specifically, our Phase 1 technical aims are listed below:
Aim#1: Develop 3D imaging technique that is suitable for in vivo automatic real-time surface imaging of small animals. Aim#2: Develop new algorithms for DOT imaging that are able to utilize the precise 3D geometric boundary data. Aim#3: Build a prototype system that integrates the 3D camera with DOT imaging device. Aim#4: Perform experiments to demonstrate the quantitative enhancement of spatial resolution and accuracy. Aim#5: Prepare for Phase 2 work plan.
Phase II
The primary objective of the SBIR effort proposed herein is to investigate the feasibility of significantly enhancing the imaging capacity and accuracy of diffuse optical tomography (DOT) technology by using a novel 3D surface imaging device that extracts accurate three-dimensional (3D) geometric boundaries and high-density detection array. Phase 2 of this proposal concentrates in a) integrating the DOT measurements with the 3D boundary extraction in a single imaging modality, in b) accurately co-registering the DOT measurements with the underlying boundary, in c) improving the source illumination characteristics and d) implementing multi-spectral imaging capabilities for simultaneously targeting multiple chromophores or fluorochromes. The developments in imaging technology to be developed under the Phase 2 SBIR project offers the following distinct advantages:
* The newly added capability to automatically and in-vivo acquire accurate 3D surface profiles.
* Enhancement of DOT imaging and quantification capacity by incorporating photon detection with very accurate positional accuracy. * Enhanced ability to perform multi-spectral imaging by using advanced source and detection technology. * Higher spatial resolution and measurement information content; the proposed 3D-DOT system design utilizes a cooled CCD sensor (512 x 512 pixels or more), instead of limited number of optical fiber probes (typically about 32 channels), to collect the optical measurement from the subject. * Efficiency and user friendliness in handling DOT imaging procedures. * We herein proposed a three-year Phase 2 research and development project that focuses on three aims: Aim #1 (main activity in year 1): Design, build and test a prototype of the integrated 2D/3D DOT system; Aim #2 (main activity in year 2): Design, build and test a prototype of the multi-spectral 3D DOT system; Aim #3 (main activity in year 3): Perform extensive tests on phantoms and animals to evaluate quantitative performance of the integrated multi-spectral 3D DOT system.
描述(由申请人提供):I期
本文提出的SBR努力的主要目标是研究通过使用新颖的3D图像设备来在非接触式检测“3D DOT”系统中提供精确的三维(3D)几何边界条件来显著增强漫射光学层析成像(DOT)技术的成像能力的可行性。3D表面图像还有助于DOT系统进行多光谱图像配准。新型3D DOT系统的原型将在Phase 2计划中构建,该计划将2D和3D图像功能集成到单个传感器单元中,并为体内漫射光学断层成像应用提供四通道多光谱成像能力。近红外(NIR)中的DOT已重新成为一种有前途的成像方式,并显着提高了我们用光定位和鉴定组织结构的能力。然而,先进的DOT算法需要良好的知识的边界几何形状的漫射介质成像,以提供准确的前向模型的光传播在该介质中。最初的实验DOT演示重建吸收体,散射体和荧光染料都使用幻影或组织局限于容易建模的几何形状,如平板或圆柱体。近年来,已经开发了几种方法来模拟光子通过具有复杂边界的扩散介质的传播,使用Monte Carlo方法,扩散或输运方程的有限解或最近基于切平面方法的分析方法。为了充分利用这些复杂算法的优势,必须以实用、实时和体内的方式提取受试者的准确3D边界几何形状。
迄今为止,还没有已知的用于提取具有全自动、准确和实时体内性能的3D尺寸边界的技术。我们提出这个SBIR项目,以满足这一需要。本研究项目的长期团队目标是开发一种新的光学层析成像系统,该系统将漫射光学层析成像传感器/光源与实时精密3D表面图像设备相结合,以便在漫射光学层析成像的同时几乎同时提取待成像物体的边界几何形状。具体而言,我们的第一阶段技术目标如下:
目标1:开发适用于小动物体内自动实时表面成像的3D成像技术。 目标2:开发能够利用精确3D几何边界数据的DOT成像新算法。目标3:建立一个原型系统,将3D相机与DOT成像设备集成。 目标4:进行实验以证明空间分辨率和准确度的定量增强。 目标5:准备第二阶段工作计划。
二期
本文提出的SBIR努力的主要目标是调查的可行性显着提高成像能力和精度的扩散光学层析成像(DOT)技术,通过使用一种新的三维表面成像设备,提取准确的三维(3D)几何边界和高密度检测阵列。该提案的第二阶段集中在a)将DOT测量与单一成像模式中的3D边界提取集成,在B)准确地将DOT测量与底层边界配准,在c)改善光源照明特性和d)实现多光谱成像功能,用于同时瞄准多个发色团或荧光染料。在SBIR项目第二阶段下开发的成像技术的发展提供了以下明显的优势:
* 新增加的自动和体内采集精确3D表面轮廓的功能。
* 通过将光子检测与非常精确的位置精度相结合,增强DOT成像和量化能力。 * 通过使用先进的光源和探测技术,增强了执行多光谱成像的能力。 * 更高的空间分辨率和测量信息含量;所提出的3D-DOT系统设计利用冷却的CCD传感器(512 x 512像素或更多),而不是有限数量的光纤探头(通常约32个通道),以收集来自受试者的光学测量。 * 处理DOT成像程序的效率和用户友好性。 * 我们在此提出了一个为期三年的第二阶段研究和开发项目,重点是三个目标:目标1(第一年的主要活动):设计、建造和测试集成2D/3D DOT系统的原型;目标2(第二年的主要活动):设计、建造和测试多光谱三维DOT系统原型;目标3(第三年的主要活动):对幻影和动物进行广泛的测试,以评估集成多光谱3D DOT系统的定量性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN YI其他文献
STEVEN YI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN YI', 18)}}的其他基金
A Novel Handheld Three-Dimensional Camera for Wound Healing Monitoring
用于伤口愈合监测的新型手持式三维相机
- 批准号:
7680716 - 财政年份:2005
- 资助金额:
$ 75.31万 - 项目类别:
A Novel Handheld Three-Dimensional Camera for Wound Healing Monitoring
用于伤口愈合监测的新型手持式三维相机
- 批准号:
7480612 - 财政年份:2005
- 资助金额:
$ 75.31万 - 项目类别:
Intestinal Canal Reconstruction from Video Capsule Image
从视频胶囊图像重建肠管
- 批准号:
6936156 - 财政年份:2005
- 资助金额:
$ 75.31万 - 项目类别:
Accuracy of Diffuse Optical Tomography Using 3d camera
使用 3D 相机进行漫反射光学断层扫描的准确性
- 批准号:
7332073 - 财政年份:2003
- 资助金额:
$ 75.31万 - 项目类别:
Accuracy of Diffuse Optical Tomography Using 3d camera
使用 3D 相机进行漫反射光学断层扫描的准确性
- 批准号:
6854643 - 财政年份:2003
- 资助金额:
$ 75.31万 - 项目类别: