Data-driven approaches for fragment merging
数据驱动的片段合并方法
基本信息
- 批准号:2445537
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on fragment-based drug discovery (FBDD), involving the screening of low-molecular-weight compounds against a target of interest to find chemical starting points that can be optimized to become lead-like molecules. The proposed work is situated within the lead optimization stage of the FBDD pipeline, which looks at how crystallographic fragment hits and the structural information they yield can be exploited to propose larger, drug-like compounds that bind to a target with increased affinity. There are several approaches to fragment elaboration, including fragment growing, linking and merging. Fragment merging is a relatively unexplored technique compared with its counterparts yet has the potential to find potent molecules. Existing strategies for merge design include manual design by a medicinal chemist, which is slow and not scalable to large datasets, and de novo design, which often results in molecules that lack synthetic accessibility and are therefore difficult and costly to pursue. Thus, the aim of this project is to use knowledge-based approaches to propose fragment merges that are synthetically feasible, allowing rapid and cheap progression from fragment hits to lead-like compounds. Various data-driven approaches will be explored, including database exploitation and AI-based techniques, which may be used synergistically to propose new compounds. Use of the former has already been demonstrated during the rotation project, which involved use of the Fragment Network, a graph database containing catalogue compounds, to create a pipeline able to find and filter fragment merges that can be prioritized for further screening. Several avenues to extend this work by enhancing the efficiency of this tool and increasing the diversity in the molecules found have already been identified. Compounds proposed by this project will also have the opportunity for experimental validation. Automated synthesis planning and execution on a robotic platform are currently being explored at XChem, and a key component of this work will be identifying compounds that can be made given the available synthetic repertoire. Integrating this entire pipeline has the potential to be high impact with respect to improving the speed at which we can progress potent ligands in drug development, thereby reducing the number of iterations required for the design-make-test cycle. The proposed work (which will exist in conjunction with another DPhil project, focused on the robotics aspect of the pipeline) will involve industrial collaboration with Vernalis and LifeArc; exact industrial supervisors are to be confirmed. This project falls within the EPSRC's 'Computational and theoretical chemistry' research area and ties strongly to the council's outlined strategies within this field. This research is highly interdisciplinary and will involve collaboration with beamline scientists, medicinal chemists and automation experts. As described above, the software developed during this project will have direct, actionable consequences for the drug discovery community, producing molecules that can be purchased or easily synthesized for further screening. Making source code and data from this project available will allow others to apply this technique to new targets and enable comparison with their own developed algorithms.
该项目的重点是基于片段的药物发现(FBDD),涉及针对感兴趣的目标筛选低分子化合物,以找到可以优化成为类铅分子的化学起点。拟议的工作位于FBDD管道的前导优化阶段,该阶段着眼于如何利用晶体片段命中及其产生的结构信息来提出更大的类药物化合物,这些化合物以更高的亲和力与目标结合。有几种片段精化的方法,包括片段增长、链接和合并。与同类技术相比,片段合并是一项相对未被探索的技术,但有可能找到有效的分子。现有的合并设计策略包括药物化学家手工设计,这很慢,而且不能扩展到大型数据集,以及从头设计,这往往导致分子缺乏合成可及性,因此进行起来困难和昂贵。因此,该项目的目标是使用基于知识的方法来提出综合上可行的片段合并,允许快速和廉价地从片段命中到类铅化合物。将探索各种数据驱动的方法,包括数据库开发和基于人工智能的技术,这些方法可以协同使用来提出新的化合物。在轮换项目期间已经演示了前者的使用,其中包括使用碎片网络,这是一个包含化合物目录的图形数据库,以创建一条管道,能够找到和过滤碎片合并,以便为进一步筛选确定优先顺序。已经确定了通过提高这一工具的效率和增加所发现的分子的多样性来扩展这项工作的几种途径。该项目提出的化合物也将有机会进行实验验证。XChem目前正在探索机器人平台上的自动化合成规划和执行,这项工作的一个关键组成部分将是识别在现有合成曲目的情况下可以制造的化合物。整合这整个流水线可能会对提高我们在药物开发中推进有效配体的速度产生很大影响,从而减少设计-制造-测试周期所需的迭代次数。拟议的工作(将与DPhil的另一个项目一起存在,重点是管道的机器人方面)将涉及与Vernalis和LifeArc的工业合作;具体的工业监督有待确认。该项目属于EPSRC的“计算和理论化学”研究领域,并与委员会在该领域内概述的战略密切相关。这项研究是高度跨学科的,将涉及与光束线科学家、药物化学家和自动化专家的合作。如上所述,在该项目期间开发的软件将对药物发现社区产生直接的、可操作的后果,生产出可以购买或容易合成的分子,以便进一步筛选。提供这个项目的源代码和数据将允许其他人将这项技术应用于新的目标,并能够与他们自己开发的算法进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
MEDAL - Methodological Excellence In Data-Driven Approaches To Linguistics
奖章 - 数据驱动语言学方法的卓越方法论
- 批准号:
10047684 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316400 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Performance maximization of finite-time and repetitive movement based on data driven controller design approaches
基于数据驱动控制器设计方法的有限时间和重复运动的性能最大化
- 批准号:
23K03909 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on a control system for total intravenous anesthesia using data-driven approaches
使用数据驱动方法研究全静脉麻醉控制系统
- 批准号:
23K03912 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316402 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316401 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
- 批准号:
2332306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Integrating clinical, data-driven and in-vitro approaches to the study of host-pathogen interactions in bovine digital dermatitis
整合临床、数据驱动和体外方法来研究牛指皮炎宿主-病原体相互作用
- 批准号:
BB/X008754/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Integrating clinical, data-driven and in-vitro approaches to the study of host-pathogen interactions in bovine digital dermatitis
整合临床、数据驱动和体外方法来研究牛指皮炎宿主-病原体相互作用
- 批准号:
BB/X008878/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement