Linking Microbial Physiology with Carbon Transformations in Peatlands Under Land Use Change

将微生物生理学与土地利用变化下泥炭地的碳转化联系起来

基本信息

  • 批准号:
    2445868
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Significant amount of carbon is stored in soils, particularly in peatlands. Increasing food and energy needs have led to intensive land use practices that deplete soil organic carbon (SOC) stores. In Scotland, drainage for agriculture and commercial forestry in its vast swathes of peatlands has caused their degradation with significant loss of carbon. Their recent restoration has led to the return of SOC sequestration, and associated climate benefits, but the underlying carbon cycling mechanisms have not been clearly understood. This mechanistic understanding is required to better predict and manage soil processes to maintain or even enhance SOC storage in peatlands while economising land-use.Microorganisms are critical in this regard because their growth and activity largely control the fate of recent plant carbon inputs, as well as the stability of assimilated microbial carbon. The balance between the rate of microbial decomposition and stabilisation of organic carbon in soil can shift under altered environmental conditions. In peatlands, water-logged conditions, anaerobiosis and acidity limit microbial growth and decomposition that consequently causes preservation of organic carbon. Peatland degradation through drainage removes the factors causing organic carbon preservation thus leading to SOC loss through microbial decomposition. Restorative approaches aim at reversing these effects thereby limiting the loss of SOC; however, the exact hydrological, chemical and biotic mechanisms and their inter-dependencies are poorly understood.This project aims at understanding the effects of peatland degradation and subsequent restoration on microbial physiological processes and their consequences on soil carbon transformations. Project will rigorously test the hypotheses that microbial growth, activity and decomposition is limited by acidity and anaerobiosis in peatlands; and that peatland degradation causes increased microbial growth and consequently decomposition of peat organic matter. We will have access to multiple peatland sites under various land use types across Scotland to test the hypotheses. The goal is to assess microbial carbon cycling functions like growth rate, carbon use efficiency, resource breakdown and uptake, maintenance and stress tolerance. These community traits will be quantified using a combination of stable isotope tracing and shot-gun metagenomics, and their fingerprints in driving changes in SOC will be assessed using chemical molecular tools like FTIR.Using stable isotope tracers, we will measure microbial incorporation of carbon into biomass and loss through respiration to quantify community-level traits like carbon use efficiency, growth rate and specific respiration across land use types. Analytical facilities for gas, solid, soil solution and compound-specific 13C isotope ratio mass spectrometry (IRMS) including cavity ring-down spectrometry (CRDS) at University of Aberdeen (UoA) and James Hutton Institute (JHI) are unique and training will be provided by the supervisory team. Whole genome shot-gun metagenomics will be used to investigate functions of peatland microbial communities under different land use. The goal here will be to extract physiological traits of microbes that are dominant in soils under different land use.The Centre for Genome Enabled Biology and Medicine (www.abdn.ac.uk/genomics) at UoA houses DNA sequencing platforms like Illumina NextSeq500 and Oxford Nanopore GridION which will be available to the project including training in molecular methods and bioinformatics. Chemical analysis of the extant organic matter will be used to characterise peatland organic matter at the molecular level using FTIR. Once we are able to form a link between microbial traits and carbon cycling processes, we will be able to use the combined knowledge to ascertain the efficacy of restorative practices in changing microbial physiology aimed at regaining and sequestering carbon in peatlands.
大量的碳储存在土壤中,尤其是泥炭地。不断增加的粮食和能源需求导致了土地集约利用做法,耗尽了土壤有机碳(SOC)储存。在苏格兰,大片泥炭地的农业和商业林业排水导致了它们的退化,碳的大量流失。它们最近的恢复导致了SOC固存的回归,以及相关的气候好处,但潜在的碳循环机制尚未被清楚地理解。在节约土地利用的同时,需要更好地预测和管理土壤过程,以维持甚至增强泥炭地的有机碳储存。微生物在这方面是至关重要的,因为它们的生长和活动在很大程度上控制着最近植物碳输入的命运,以及同化微生物碳的稳定性。在改变的环境条件下,土壤中微生物分解速率和有机碳稳定化之间的平衡会发生变化。在泥炭地,淹水条件、厌氧和酸度限制了微生物的生长和分解,从而导致有机碳的保存。通过排水的泥炭地退化消除了导致有机碳保存的因素,从而通过微生物分解导致有机碳的损失。恢复性方法旨在逆转这些影响,从而限制有机碳的损失;然而,确切的水文、化学和生物机制及其相互依赖关系尚不清楚。本项目旨在了解泥炭地退化和随后的恢复对微生物生理过程的影响及其对土壤碳转化的影响。该项目将严格检验以下假设,即微生物的生长、活动和分解受到泥炭地酸度和厌氧性的限制;泥炭地退化导致微生物生长增加,从而分解泥炭有机物质。我们将访问苏格兰各地不同土地利用类型下的多个泥炭地,以验证假设。目标是评估微生物的碳循环功能,如生长速度、碳利用效率、资源分解和吸收、维持和抗逆性。这些群落特征将使用稳定同位素示踪和枪炮元基因组学相结合的方法进行量化,并将使用FTIR等化学分子工具评估其在驱动SOC变化方面的指纹。使用稳定同位素示踪剂,我们将测量微生物将碳并入生物量和通过呼吸作用损失,以量化不同土地利用类型的群落特征,如碳利用效率、生长速度和比呼吸作用。阿伯丁大学(UoA)和詹姆斯·赫顿研究所(JHI)的气体、固体、土壤溶液和特定于化合物的13C同位素比质谱仪(IRMS)的分析设施是独一无二的,监督小组将提供培训。全基因组弹枪元基因组学将用于研究泥炭地微生物群落在不同土地利用方式下的功能。这里的目标是提取在不同土地利用下土壤中占主导地位的微生物的生理特征。加州大学基因组使能生物和医学中心(www.abdn.ac.uk/genology)拥有Illumina NextSeq500和牛津纳米孔网格等DNA测序平台,这些平台将用于该项目,包括分子方法和生物信息学方面的培训。现有有机质的化学分析将被用来利用FTIR在分子水平上表征泥炭地有机质。一旦我们能够在微生物特征和碳循环过程之间建立联系,我们就能够利用组合的知识来确定恢复性做法在改变旨在恢复和隔离泥炭地碳的微生物生理方面的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

水热炭的微生物陈化(Microbial-aged Hydrochar)及其对稻田氨挥发的影响机制
  • 批准号:
    41877090
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

The contribution of yeast to gastrointestinal microbial ecology and regulation of host physiology
酵母对胃肠道微生物生态和宿主生理调节的贡献
  • 批准号:
    RGPIN-2019-06336
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Effects of phytoplankton and microbial physiology on surface ocean carbon cycling under climate change conditions
气候变化条件下浮游植物和微生物生理对表层海洋碳循环的影响
  • 批准号:
    559673-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Targeted Infusion Project: Integration of microbial enrichment, physiology and genomics via extended course-based undergraduate research experiences (eCURE)
靶向输注项目:通过扩展的基于课程的本科生研究经验整合微生物富集、生理学和基因组学 (eCURE)
  • 批准号:
    2205569
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Microbial Physiology of Alcohol and Hydrogen Production at High Temperatures
高温下酒精和氢气生产的微生物生理学
  • 批准号:
    RGPIN-2019-04322
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Microbial Modulation of Physiology and Behavior of C. elegans
微生物对线虫生理和行为的调节
  • 批准号:
    10590711
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Microbial Modulation of Physiology and Behavior of C. elegans
微生物对线虫生理和行为的调节
  • 批准号:
    10373061
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Microbial Physiology of Alcohol and Hydrogen Production at High Temperatures
高温下酒精和氢气生产的微生物生理学
  • 批准号:
    RGPIN-2019-04322
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The contribution of yeast to gastrointestinal microbial ecology and regulation of host physiology
酵母对胃肠道微生物生态和宿主生理调节的贡献
  • 批准号:
    RGPIN-2019-06336
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Microbial Modulation of Physiology and Behavior of C. elegans
微生物对线虫生理和行为的调节
  • 批准号:
    10205915
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Effects of phytoplankton and microbial physiology on surface ocean carbon cycling under climate change conditions
气候变化条件下浮游植物和微生物生理对表层海洋碳循环的影响
  • 批准号:
    559673-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了