Deep Patient Trajectory Analysis: Learning from electronic health records

深度患者轨迹分析:从电子健康记录中学习

基本信息

  • 批准号:
    2446166
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Electronic health records (EHR) have recently matured into an enormous source of routinely collected information. Today, a single EHR can contain comprehensive medical histories for millions of patients, logging and collating data collected from all levels of healthcare over the course of decades from multiple healthcare institutions. Such a dataset can contain terabytes of information, with billions of entries recorded in a complex underlying data structure. In the past, classical survival analysis techniques have been used extensively to make predictions about the future of patients based on relatively small quantities of information. In my work, I am investigating how we can leverage much more of the information available in electronic health records, by adapting survival analysis techniques to a deep learning framework, to give healthcare providers more accurate survival distribution predictions and therefore improve their ability to make effective healthcare decisions. The primary aim of this research is to produce deep learning models that are capable of processing a patient's entire medical history and returning a precise distribution for the time to an event of interest. This will require several independent components. Firstly, we will develop a robust method of pre-processing multi-modal, multi-source longitudinal EHR data. Secondly, we will need a suitable deep learning architecture that can identify the potentially complicated patterns in this data to create an accurate model of a patient and their susceptibility to the event of interest. Finally, we want our models to output a suitable survival distribution for the time to the event of interest. While there has already been some research into applying deep learning to EHR data, this methodology is novel in that it goes further than previous work, which has only looked into the probability of events occurring between discrete timepoints. I also plan to extend the work further by adapting more advanced survival analysis techniques to a deep learning framework, by exploring competing risks and multi-state models as well as scoring for distribution family selection. This research is being done in collaboration with the NIHR ARC Northwest London research group and methods developed will be applied to data from the Northwest London Whole System Integrated Care (WSIC) database, with the aim of providing local healthcare providers with improved tools to understand and improve their care. The first case studies we plan to test our methods on include investigating time to events and multi-state modelling for patients suffering from Diabetes, heart-conditions as well as those with multi-morbidities. This project falls within the EPSRC healthcare technologies research area.
电子健康记录 (EHR) 最近已发展成为常规收集信息的巨大来源。如今,一个 EHR 可以包含数百万患者的全面病史,记录和整理数十年来从多个医疗机构从各级医疗保健收集的数据。这样的数据集可以包含 TB 级的信息,在复杂的底层数据结构中记录了数十亿条条目。过去,经典的生存分析技术已被广泛使用,基于相对少量的信息来预测患者的未来。在我的工作中,我正在研究如何通过将生存分析技术适应深度学习框架,利用电子健康记录中的更多可用信息,为医疗保健提供者提供更准确的生存分布预测,从而提高他们做出有效医疗保健决策的能力。这项研究的主要目的是产生深度学习模型,能够处理患者的整个病史并返回感兴趣事件的精确时间分布。这将需要几个独立的组件。首先,我们将开发一种强大的方法来预处理多模式、多源纵向 EHR 数据。其次,我们需要一个合适的深度学习架构,可以识别这些数据中潜在的复杂模式,以创建患者及其对感兴趣事件的易感性的准确模型。最后,我们希望我们的模型能够针对感兴趣的事件输出合适的生存分布。虽然已经有一些将深度学习应用于 EHR 数据的研究,但这种方法的新颖之处在于它比之前的工作更进一步,之前的工作仅研究离散时间点之间发生事件的概率。我还计划通过将更先进的生存分析技术应用于深度学习框架、探索竞争风险和多状态模型以及分布族选择评分来进一步扩展工作。这项研究是与 NIHR ARC 西北伦敦研究小组合作完成的,所开发的方法将应用于伦敦西北部整体系统综合护理 (WSIC) 数据库的数据,旨在为当地医疗保健提供者提供改进的工具来了解和改善他们的护理。我们计划测试我们方法的第一个案例研究包括调查糖尿病、心脏病以及患有多种疾病的患者的事件发生时间和多状态模型。该项目属于 EPSRC 医疗保健技术研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
  • 批准号:
    10103989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
  • 批准号:
    10105921
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
患者・市民にとってのPPI(Patient and Public Involvement)の有用性の検討
检查 PPI(患者和公众参与)对患者和公民的有用性
  • 批准号:
    24K13672
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reducing Harm In Ventilated Patients: First In-patient Evaluation Of A Smart Endotracheal Tube
减少通气患者的伤害:智能气管插管的首次住院评估
  • 批准号:
    MR/Y008642/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
  • 批准号:
    24K13361
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Patient iPSC-derived brain organoids as a model for cognitive phenotypes of Duchenne muscular dystrophy
患者 iPSC 衍生的脑类器官作为杜氏肌营养不良症认知表型的模型
  • 批准号:
    24K18635
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
  • 批准号:
    10103504
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
  • 批准号:
    10106117
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Launchpad
看護管理情報とPatient/Nurse Outcomeに関するエビデンス創出のためのPlatform開発
开发平台,用于创建有关护理管理信息和患者/护士结果的证据
  • 批准号:
    23K27871
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TAVI生体弁におけるProsthesis-patient mismatchの適切な評価方法の確立
建立 TAVI 生物瓣膜假体与患者不匹配的适当评估方法
  • 批准号:
    24K11278
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了