SINGLE CELL ASSAYS TO UNDERSTAND SIGNALING NETWORKS
通过单细胞分析了解信号网络
基本信息
- 批准号:6963241
- 负责人:
- 金额:$ 14.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:3T3 cellsbioengineering /biomedical engineeringbioimaging /biomedical imagingbiological information processingbiological signal transductionbiological transportbiomedical equipment developmentcharge coupled device camerachemical kineticscomputer program /softwarecomputer system design /evaluationdata collection methodology /evaluationelectrophysiologyfluorescence microscopyfluorescent dye /probefunctional /structural genomicsgreen fluorescent proteinsintermolecular interactionmicroarray technologyplatelet derived growth factorreceptor couplingsecond messengerssingle cell analysistime resolved data
项目摘要
DESCRIPTION: (Applicant's Abstract) This proposal has two overall objectives:
The first objective is to develop and apply a new research strategy in
functional genomics by combining a genome wide view of all signaling proteins
with single cell signaling assays in order to break down the fundamental
mechanisms of cellular signal transduction networks. The second objective is to
give the candidate first-rate training in the fields of Genomics,
Bioinformatics, and Signal Transduction under the guidance of Drs. David
Botstein and Tobias Meyer. The candidate currently has significant experience
in the development of biological instrumentation and would like to use the K25
Career Award to become a tenure track faculty investigating signal transduction
networks from a functional genomics perspective.
There is more and more evidence for the existence of cross-talk and feedback in
signaling pathways, particularly in those involved in growth and
differentiation where several thousand gene products may be involved. Signaling
pathways can no longer be thought of as independent, linear sets of events, but
rather must be understood as a dynamic network. While there are presently
excellent assays to establish the identity of different players in the network
- for example, by yeast two-hybrid screens - or to obtain final readouts by
using microarrays, there is a lack of tools with which to study networks
dynamically and to understand how the players interact in the context of
different receptor stimuli.
The candidate has recently co-developed an Evanescent-wave Single Cell Array
Macroscope (E-SCAM) and has used it to show that timecourses of protein
translocation and activation can be measured in thousands of single cells
simultaneously. By continuing to develop this E-SCAM system for monitoring
multiple signaling events over time, along with methodology to quantitatively
perturb such a network, the proposed work will be able to establish
quantitative kinetic relationships between signaling network parameters and
begin to generate models of how cellular signal transduction networks function.
PDGF-stimulation of NIH-3T3 fibroblasts was chosen as a model system since the
complexity of the resulting signaling responses is well established and since
many complementary experimental approaches have provided data that will be
useful for the proposed study.
(申请人摘要)本提案有两个总体目标:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary N Teruel其他文献
Mary N Teruel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary N Teruel', 18)}}的其他基金
Controlling the rate of adipocyte differentiation: Experiments and theory
控制脂肪细胞分化率:实验和理论
- 批准号:
8986787 - 财政年份:2015
- 资助金额:
$ 14.37万 - 项目类别:
Controlling the rate of adipocyte differentiation: Experiments and theory
控制脂肪细胞分化率:实验和理论
- 批准号:
8816954 - 财政年份:2015
- 资助金额:
$ 14.37万 - 项目类别:
SINGLE CELL ASSAYS TO UNDERSTAND SIGNALING NETWORKS
通过单细胞分析了解信号网络
- 批准号:
6627386 - 财政年份:2001
- 资助金额:
$ 14.37万 - 项目类别:
SINGLE CELL ASSAYS TO UNDERSTAND SIGNALING NETWORKS
通过单细胞分析了解信号网络
- 批准号:
6835485 - 财政年份:2001
- 资助金额:
$ 14.37万 - 项目类别:
SINGLE CELL ASSAYS TO UNDERSTAND SIGNALING NETWORKS
通过单细胞分析了解信号网络
- 批准号:
6490430 - 财政年份:2001
- 资助金额:
$ 14.37万 - 项目类别:
SINGLE CELL ASSAYS TO UNDERSTAND SIGNALING NETWORKS
通过单细胞分析了解信号网络
- 批准号:
6228480 - 财政年份:2001
- 资助金额:
$ 14.37万 - 项目类别:














{{item.name}}会员




