Peripheral Nerve Regeneration using Electrical Stimulation

使用电刺激的周围神经再生

基本信息

  • 批准号:
    2486127
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Nerve injury is a debilitating condition that often requires surgical intervention to bridge the nerve injury site to promote regeneration of severed axons towards downstream muscles and other organs. Regeneration of neural tissue can potentially be enhanced using biomaterials which maintain similar mechanical properties to that of endogenous tissue whilst also providing topology which directs nerve growth. Research has shown that further enhancements can be achieved through electrical stimulation, and the local delivery of neurotrophic growth factors and small molecules, however the timing, dosage and mechanism of delivery of these needs to be matched to the progression of regeneration so no such treatments are currently available clinically. Another fundamental challenge associated with current nerve repair is the inability to detect the extent to which regeneration is progressing, which is essential to clinical decision making. Currently detection of regeneration progression is crude and relies on the physician physically tapping along the skin, using a method developed over 100 years ago. This project therefore aims to address these challenges through developing novel biomaterials that can sense progression of nerve regeneration and respond to enhance the local regenerative microenvironment through molecular and/or electrical cues. This approach will be built upon the unique photophysical and electrochemical properties of organic semiconductor-based polymers. The main benefit of using these polymers is to introduce electric stimulation directly to the site of regeneration to improve therapeutic outcomes. The next step would be retaining the electrochemical and photophysical features of the semiconductors developed whilst integrating them into a biocompatible system matching the electrochemical and physical properties of the tissue. Once a semiconductor-based structure has been successfully synthesized, the material will be encapsulated using self-assembling peptides. This will aid biocompatibility of the semiconductor and provide guidance for the regenerating nerves. Furthermore, peptides can be readily functionalized with imaging modalities, and used in the sustained release of therapeutic compounds. This approach will be explored in order to pioneer a new generation of nerve repair conduits that can sense regeneration and respond by enhancing the local regenerative microenvironment accordingly. Upon successful design of a biocompatible polymer(s) the materials will be tested using advanced 3D cell culture models that can accurately model the in vivo environment at the site of nerve injury. This approach will be used to assess regeneration, predict host cell responses, and test feasibility of different imaging modalities that could detect the extent of tissue regeneration as well as the effect of electrical stimulation on regeneration. If the material development and in vitro testing work progresses rapidly and there is sufficient time remaining then next steps will take the technology forward for testing in vivo, although this is likely to form a subsequent project since the development and in vitro testing of the three different functionalities (regeneration support, imaging to detect progression, electrical stimulation) is likely to be a sufficiently ambitious aim for a PhD. This project will therefore pioneer sophisticated new healthcare technology for treating nerve injuries, tailored to the specific patient and injury scenario. The project covers the 2 of the ESPRC remits of Advanced Product Design & Complex Product Characterisation. By attempting to design a therapeutic solution that incorporates the medicinal benefits of peptide constructs and a delivery mechanism of electrical stimulation through organic electronics and, subsequently the extensive characterization work, both of the remits will be covered by the work required during the project.
神经损伤是一种使人衰弱的疾病,通常需要手术干预来桥接神经损伤部位,以促进切断的轴突向下游肌肉和其他器官再生。使用生物材料可以增强神经组织的再生,该生物材料保持与内源性组织相似的机械性能,同时还提供指导神经生长的拓扑结构。研究表明,可以通过电刺激以及神经营养生长因子和小分子的局部递送来实现进一步的增强,但是这些递送的时间、剂量和机制需要与再生的进展相匹配,因此目前临床上还没有此类治疗方法。与当前神经修复相关的另一个基本挑战是无法检测再生进展的程度,这对于临床决策至关重要。目前对再生进程的检测还很粗糙,依赖于医生使用 100 多年前开发的方法沿皮肤进行物理敲击。因此,该项目旨在通过开发新型生物材料来应对这些挑战,这些生物材料可以感知神经再生的进展,并通过分子和/或电信号响应增强局部再生微环境。这种方法将建立在有机半导体聚合物独特的光物理和电化学特性的基础上。使用这些聚合物的主要好处是将电刺激直接引入再生部位以改善治疗效果。下一步将保留所开发的半导体的电化学和光物理特性,同时将它们集成到与组织的电化学和物理特性相匹配的生物相容性系统中。一旦成功合成了基于半导体的结构,该材料将使用自组装肽进行封装。这将有助于半导体的生物相容性并为神经再生提供指导。此外,肽可以很容易地通过成像方式功能化,并用于治疗化合物的持续释放。我们将探索这种方法,以开创新一代神经修复导管,该导管可以感知再生并通过相应增强局部再生微环境来做出反应。成功设计生物相容性聚合物后,将使用先进的 3D 细胞培养模型对材料进行测试,该模型可以准确模拟神经损伤部位的体内环境。该方法将用于评估再生、预测宿主细胞反应并测试不同成像方式的可行性,这些成像方式可以检测组织再生的程度以及电刺激对再生的影响。如果材料开发和体外测试工作进展迅速,并且还有足够的时间,那么下一步将推动该技术进行体内测试,尽管这可能会形成一个后续项目,因为三种不同功能(再生支持、成像检测进展、电刺激)的开发和体外测试可能是博士学位的一个足够雄心勃勃的目标。因此,该项目将开创用于治疗神经损伤的复杂的新医疗保健技术,针对特定的患者和损伤情况进行定制。该项目涵盖了 ESPRC 的两项职责:先进产品设计和复杂产品表征。通过尝试设计一种治疗解决方案,将肽结构的药用价值和通过有机电子学的电刺激传递机制结合起来,以及随后的广泛表征工作,项目期间所需的工作将涵盖这两个职权范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

The role of Taf7l and Fscn1 in peripheral nerve regeneration
Taf7l和Fscn1在周围神经再生中的作用
  • 批准号:
    23K08674
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a New Method for Peripheral Nerve Regeneration with Adipose Tissue Derived Stem Cells and Platelet Rich Plasma
开发利用脂肪组织干细胞和富血小板血浆进行周围神经再生的新方法
  • 批准号:
    22K09313
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel non-invasive therapy to drive robust and sustained peripheral nerve regeneration
新型非侵入性疗法可驱动强大且持续的周围神经再生
  • 批准号:
    461880
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Involvement of newly-identified fibroblast-like cells in peripheral nerve regeneration
新发现的成纤维细胞样细胞参与周围神经再生
  • 批准号:
    22H03287
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of the molecular mechanism of peripheral nerve axon regeneration focusing on the transcription factor REST and the search for new treatments.
以转录因子REST为重点研究周围神经轴突再生的分子机制并寻找新的治疗方法。
  • 批准号:
    22K09342
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-invasive Electrical Stimulation to Augment Human Peripheral Nerve Regeneration in Carpal Tunnel Syndrome
无创电刺激可增强腕管综合症患者周围神经的再生
  • 批准号:
    MR/X000362/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Exploring the fundamental biology of peripheral nerve regeneration
探索周围神经再生的基础生物学
  • 批准号:
    574899-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Peripheral nerve reconstruction: NO hope for advanced regeneration
周围神经重建:高级再生无望
  • 批准号:
    2590415
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Delineating the cell intrinsic mechanisms of peripheral nerve regeneration
描述周围神经再生的细胞内在机制
  • 批准号:
    MR/T028785/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fellowship
The importance of cholesterol control in neurons during peripheral nerve regeneration
周围神经再生过程中神经元胆固醇控制的重要性
  • 批准号:
    21K07304
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了