Using Machine Learning in Decision-making to Augment Beauty, Resilience, and Sustainability Outcomes in Urban Planning
在决策中使用机器学习来增强城市规划的美观性、弹性和可持续性成果
基本信息
- 批准号:2496675
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed research seeks to answer the question of how machine learning may be used in decision-making to augment beauty, resilience, and sustainability outcomes in urban planning, design, and engineering in the UK. BackgroundBy 2050, 6.7 billion or 68% of the world's population is expected to live in cities (UN,2019), which means that both developing and developed worlds are faced with enormous challenges and critical and strategic decisions that must be made today. To ensure that this phenomenon of urbanisation and the other enduring global megatrend of climate change do not result in environmental catastrophes or a poor quality of life in these cities, governments and city leaders, globally, are grappling with decision-making for "complex situations in complex environments" (Bennett and Bennett,2008). Vast amounts of data generated through the amplified digital connectivity of the Fourth Industrial Revolution and concurrent growth in data analytics capabilities have permitted good support systems for decision and policy-making, yet, many instances of policy or strategy as well as design and engineering as applicable to the urban, environmental or sustainability domains remain the legacy of authoritarian decisions, creating ineffective, depoliticised solutions from standardized options and checklists (Jordan and Turnpenny,2015). Cities continue to evolve and change in a potentially irreversible manner, so, acknowledging that the challenges of the urban built environment are extraordinarily complex, understanding this complexity in the contexts of climate change, technological advancements, terror threats, cyberattacks, biological warfare, etc, understanding the problem(s) (which in itself may be an iterative process) for which solutions are sought, and understanding the human limitations are important first steps, and will help with identifying where and what types of decisions are required to augment the performance of cities, and where and how technology could help. Literature is limited in these areas. To be successful, McKinsey's broad recommendations are that city leaders adopt a strategic approach, plan for change, integrate environmental thinking, and base the value proposition of their cities on opportunities for all. These recommendations demand that decision-making by stakeholders leading urban planning, design, and engineering (UPDE) today is not only innovative, collaborative, and creative but also based on an ability to learn from the past at one level and see and shape the future at another. Machine Learning - a subset of Artificial Intelligence - with its well-documented ability to classify trends and patterns as well as ability to deal with multi-dimensional, multi-variable big data, is well-placed to: 1. help improve one's understanding of this situation's complexity 2. transform how new towns, cities, and large-scale mixed-use urban developments (LMUDs) are conceived, developed, and maintained, and 3. augment the performance outcomes of new towns, cities, and LMUDs.
这项拟议的研究旨在回答如何将机器学习用于决策,以增强英国城市规划、设计和工程中的美观、韧性和可持续性结果。背景到2050年,预计将有67亿或68%的世界人口居住在城市(联合国,2019年),这意味着发展中国家和发达国家都面临着巨大的挑战,以及当今必须做出的关键和战略决策。为了确保这种城市化现象和其他持久的全球气候变化大趋势不会导致环境灾难或这些城市的生活质量下降,全球各国政府和城市领导人都在努力制定“复杂环境中的复杂情况”的决策(Bennett和Bennett,2008)。第四次工业革命扩大的数字连接所产生的海量数据以及数据分析能力的同步增长为决策和政策制定提供了良好的支持系统,然而,适用于城市、环境或可持续发展领域的许多政策或战略以及设计和工程仍然是威权决策的遗留问题,根据标准化的选项和核对表创造了无效的、非政治化的解决方案(Jordan和Turnpenny,2015)。城市继续以一种潜在不可逆转的方式发展和变化,因此,承认城市建成环境的挑战异常复杂,在气候变化、技术进步、恐怖威胁、网络攻击、生物战等背景下理解这种复杂性,了解为哪些问题寻求解决方案(S)(本身可能是一个迭代过程),以及了解人类的局限性是重要的第一步,这将有助于确定需要在哪里和什么类型的决策来增强城市的性能,以及技术可以在哪里和如何帮助。在这些领域,文学是有限的。为了取得成功,麦肯锡的广泛建议是,城市领导人采取战略方法,规划变革,整合环境思维,并将城市的价值主张建立在人人都有机会的基础上。这些建议要求当今领导城市规划、设计和工程(UPDE)的利益相关者的决策不仅要具有创新性、协作性和创造性,而且要基于在一个层面上学习过去、在另一个层面上预见和塑造未来的能力。机器学习-人工智能的一个子集-具有良好的分类趋势和模式的能力以及处理多维、多变量大数据的能力,适合于:1.帮助提高对这种情况的复杂性的理解;2.改变新城镇、城市和大型混合用途城市开发(LMUD)的构思、开发和维护方式;3.增强新城镇、城市和LMUD的绩效成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
-- - 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




