Green Energy, Optoelectronics and Semiconductors Enabled by a New Paradigm in Molecular Self-Assembly

分子自组装新范式推动绿色能源、光电和半导体

基本信息

  • 批准号:
    2565768
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Conductivity and electron mobility are crucial to the efficiency and performance of materials targeted to the field of electronics. When governing these properties, geometrical relationships between molecular constituents are key. As such, an ability to control the molecular-level architecture of a material translates to control of the electronic properties of that material.This project introduces a new paradigm in self-assembly involving organometallic molecular constituents (OMCs) to create electronically active crystalline materials. The unique geometries we create between constituents are designed to optimise electron transport and provide next generation components for the electronics industry while furthering our understanding of the fundamentals of molecular electronics.The project is divided into three stages:Stage 1)Prepare Materials and Theory The small molecules at the foundation of the project are organometallic constituents featuring three key components: a) conjugated systems that act as paving stones for electrons. b) metal atoms used as a functional scaffold to position and electronically couple two or more conjugated systems into a section of pathway. c) directing groups that oversee self-assembly of the sections of pathway into a route for electron transport.After synthesis of the OMCs, carefully designed self-assembly is induced through crystallisation and provides the targeted materials featuring defined and unique molecular architectures. The student will work with LA to synthesise the OMCs using modern organic and organometallic synthetic techniques in which LA is an expert. The student will investigate directing groups and crystallisation conditions to self-assemble the OMCs and then characterise the materials with spectroscopic techniques and X-ray diffraction. The student will simultaneously work with MW to develop a computational model of the targeted materials able to predict and understand their conductive behaviour. This process will be facilitated by MW's expertise in theoretical models for electron transport.Stage 2)Relate Structure to Electronic Properties Combining experiment and theory to understand the mechanism of electron transport through these crystalline materials is a primary objective of this project. To do this, we will characterise the electronic properties of the materials prepared in stage 1 and relate those properties to structure. The student will work with AJA and her research group as part of a secondment at the UoY to experimentally determine the conductivity and mobility of the materials prepared in stage 1. The student will incorporate the crystalline materials into simple probe station devices such as resistors. The expertise of AJA and her group in developing these devices will be essential for the student to manage the high degree of technical difficulty associated with these measurements. The student will use the experimental results obtained with AJA to refine the computational model developed in stage 1, ensuring the model accurately predicts the experimentally observed electronic properties of the materials.Stage 3)Creating Devices The refined computational model will inform design of 2nd generation materials comprising architectures that are optimised for specific electronic applications. For example, we will target high electron mobility for application to FETs. The 2nd generation materials will be incorporated into devices and tested for their performance. This final stage moves the project beyond the academic arena, allowing us to confidently engage industrial collaborators and international investors. The student will design and prepare the optimised materials with LA and MW. The student will work with AJA and MB to make the first FET devices featuring this unique class of material. In doing so, the student will place their stamp on the project and the field of molecular electronics.
电导率和电子迁移率对电子领域材料的效率和性能至关重要。当控制这些性质时,分子成分之间的几何关系是关键。因此,控制材料的分子级结构的能力转化为对该材料的电子特性的控制。本项目介绍了一种涉及有机金属分子成分(OMCs)的自组装新范式,以创建电子活性晶体材料。我们在组件之间创建的独特几何形状旨在优化电子传输,并为电子行业提供下一代组件,同时进一步加深我们对分子电子学基础知识的理解。该项目分为三个阶段:第一阶段准备材料和理论项目的基础小分子是有机金属成分,具有三个关键组成部分:a)作为电子铺路石的共轭系统。B)用作功能支架的金属原子,将两个或多个共轭系统定位并电子耦合到一段通路中。C)将监督路径部分自组装的基团引导成电子传递的路线。在omc合成后,精心设计的自组装通过结晶诱导,并提供具有明确和独特分子结构的目标材料。学生将与LA合作,使用LA擅长的现代有机和有机金属合成技术合成omc。学生将研究定向基团和自组装omc的结晶条件,然后用光谱技术和x射线衍射表征材料。该学生将同时与MW一起开发目标材料的计算模型,以预测和理解其导电行为。MW在电子传输理论模型方面的专业知识将促进这一过程。结合实验和理论来理解电子在这些晶体材料中的传递机制是本项目的主要目标。为此,我们将描述在第一阶段制备的材料的电子特性,并将这些特性与结构联系起来。作为uy借调的一部分,该学生将与AJA及其研究小组一起工作,通过实验确定第一阶段制备的材料的导电性和迁移率。学生将把晶体材料结合到简单的探针站设备中,如电阻。AJA和她的团队在开发这些设备方面的专业知识对于学生管理与这些测量相关的高度技术难度至关重要。学生将使用AJA获得的实验结果来完善第一阶段开发的计算模型,确保模型准确地预测实验观察到的材料的电子特性。精细化的计算模型将为第二代材料的设计提供信息,这些材料包括针对特定电子应用进行优化的架构。例如,我们的目标是将高电子迁移率应用于场效应管。第二代材料将被整合到设备中并测试其性能。这个最后阶段使项目超越了学术领域,使我们能够自信地与工业合作者和国际投资者接触。学生将使用LA和MW设计和准备优化的材料。该学生将与AJA和MB一起制作第一个具有这种独特材料的FET器件。这样做,学生将在项目和分子电子学领域打下自己的印记。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
  • 批准号:
    10085992
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Energy Neutral Anthropogenic Nitrogen Management
能源中性人为氮管理
  • 批准号:
    FT230100243
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
  • 批准号:
    NE/Y004973/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
NSF Engines: Louisiana Energy Transition Engine
NSF 发动机:路易斯安那州能源转型发动机
  • 批准号:
    2315727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了