Matter couplings in theories of gravity beyond General Relativity
超越广义相对论的引力理论中的物质耦合
基本信息
- 批准号:2576210
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In Einstein's theory of General Relativity it is well understood how to couple matter fields to gravity. The standard approach is often referred to as the principle of minimal coupling which contains two steps. First, the equations describing the matter are formulated in Minkowski space which means that time and space are no longer distinct concepts but become part of a 4-dimensional Lorentzian manifold, flat initially. Second, one replaces partial derivatives with covariant derivatives and the Minkowski metric with an arbitrary spacetime metric. This process, however, can yield different gravitational theories when one considers the metric and connection as independent variables. When applied to Dirac fields one naturally arrives at Einstein-Cartan theory, a theory well known since the 1920s with much renewed interesting from the 1960s onwards. It is well known that the electromagnetic field cannot be coupled minimally in Einstein-Cartan theory as the torsion field would couple to the electromagnetic potential, thereby breaking its gauge invariance. The also applied to non-Abelian gauge fields.The project will investigate the minimal coupling procedure in various modified theories of gravity and study the resulting field equations. Various recently proposed theories of gravity have unusual properties, for instance, some models are no longer locally Lorentz invariant but are invariant under global Lorentz transformations. The matter coupling procedure in such models is known to be subtle but it is possible to prescribe a consistent coupling procedure which return the general relativistic equations in the appropriate limit. Less is know about models which can loose diffeomorphism invariance on small scales.In addition to minimal couplings one can also consider non-minimal couplings. By this one means any interaction term involving the matter field and a geometrical quantity, like the curvature scalar. However, one can also consider a variety of other non-minimal couplings where the matter interacts with a boundary term, for example, which may not necessarily have a geometrical interpretation. This is a relatively new field of research allowing for a large amount of possible models to be investigated.Research Areas: mathematical sciences -> mathematical physics
在爱因斯坦的广义相对论中,人们很好地理解了如何将物质场与引力耦合起来。标准方法通常被称为最小耦合原则,它包含两个步骤。首先,描述物质的方程是在闵可夫斯基空间中制定的,这意味着时间和空间不再是不同的概念,而是成为四维洛伦兹流形的一部分,最初是平坦的。其次,用协变导数代替偏导数,用任意时空度规代替闵可夫斯基度规。然而,当我们把度规和联系看作独立变量时,这个过程可以产生不同的引力理论。当应用到狄拉克领域的一个自然到达爱因斯坦-嘉当理论,一个理论众所周知,自20世纪20年代以来,有很多新的有趣从20世纪60年代起。众所周知,在爱因斯坦-嘉当理论中,电磁场不能最小耦合,因为扭转场会耦合到电磁势,从而破坏其规范不变性。本计画将探讨各种修正重力理论中的最小耦合程序,并研究由此产生的场方程式。最近提出的各种引力理论都有不寻常的性质,例如,一些模型不再是局部洛伦兹不变的,而是在全局洛伦兹变换下不变的。这种模型中的物质耦合过程是微妙的,但可以规定一个一致的耦合过程,在适当的限制下返回广义相对论方程。我们对在小尺度上失去自同构不变性的模型知之甚少,除了最小耦合外,还可以考虑非最小耦合。这意味着任何涉及物质场和几何量的相互作用项,如曲率标量。然而,人们也可以考虑各种其他非最小耦合,其中物质与边界项相互作用,例如,其可能不一定具有几何解释。这是一个相对较新的研究领域,可以对大量可能的模型进行研究。研究领域:数学科学->数学物理
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
- 批准号:
23H01131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS: Computational and Experimental Mechanistic Approach to Understand and Develop Asymmetric Fe-Catalyzed Cross-Couplings with C(sp3) Fragments
CAS:理解和开发 C(sp3) 片段不对称 Fe 催化交叉偶联的计算和实验机制方法
- 批准号:
2246853 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A research project funded by AstraZeneca looking at atroposelective cross-couplings using ligands containing an axis of chirality.
由阿斯利康资助的一个研究项目,着眼于使用含有手性轴的配体进行天体选择性交叉偶联。
- 批准号:
2884854 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
New Amine-Acid Couplings and Their Impact on Medicinal Properties
新型胺酸偶联及其对药用特性的影响
- 批准号:
10518739 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Flow rate improvement on safety fluid transfer couplings for energy sector
能源领域安全流体传输接头的流量改进
- 批准号:
10039642 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Enhanced Flow, Pressure and Reliability Analysis of High-Flow safety couplings
高流量安全接头的增强流量、压力和可靠性分析
- 批准号:
10023355 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
New Amine-Acid Couplings and Their Impact on Medicinal Properties
新型胺酸偶联及其对药用特性的影响
- 批准号:
10668472 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Application of XUV and Soft-x-ray Attosecond Spectroscopies to Quantify Vibronic Couplings and Charge Dynamics
应用 XUV 和软 X 射线阿秒光谱量化电子振动耦合和电荷动力学
- 批准号:
2207641 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant