Generalized Symmetries in Quantum Field Theories
量子场论中的广义对称性
基本信息
- 批准号:2580839
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This PhD project will explore the mathematical and physical implications of higher-form symmetries in Quantum Field Theories (QFTs), and extensions thereof includ-ing higher-group structures and other categorical symmetries. Higher-form sym-metries have charged objects that are higher-dimensional, defect operators in the QFT, e.g. line operators in Yang-Mills theory. These are charged under topological operators, which form a so-called higher-form symmetry group. The higher-group structure arises whenever higher-form symmetries of a given theory do not simply form a product group, but a "generalized extension". Such symmetries have only recently been uncovered in Mathematical Physics. Complementing this, their mathematical structure has recently seen a lot of exciting developments in algebraic topology/category theory. This project aims to synergize these developments and to explore the physical im-plications of such symmetries upon 4d and lower dimensional gauge theories: specifically, understanding the role of higher-groups in constraining the dynamics and vacuum structure of QFTs, and in particular N=1 supersymmetric gauge theo-ries. The goal is to obtain a comprehensive understanding of all higher-group and gen-eralized symmetry structures in 4d. Concretely the objectives are: 1. Determining the global flavor symmetry group, 1-form symmetries and the 2-group structures or anomalies that these higher-form symmetries form, for 4d gauge theories with matter as well as quiver gauge theories. 2. Determining the implications on the vacuum structure of such QFTs, in par-ticular in view of confinement. 3. Matching these generalized symmetries across QFT dualities (e.g. Seiberg-like dualities). 4. Developing methods to realize these generalized symmetries in string theo-ry constructions of QFTs. 5. Generalizing to lower-dimensional QFTs (with applications in condensed matter) as well as non-supersymmetric theories.The methodology is founded in Mathematical Physics, with a very strong compo-nent in algebraic topology and category theory. The emergence of categorical symmetries is very recent and the project intends to combine these with modern tools in QFT such as dualities, geometric realization in string theory and applications to lower dimensional theories, such as condensed matter. This aligns with the EPSRC research strategy for Mathematical Physics,algebraic topology, and, on the Physics side, condensed matter. This project stands out as an interdisciplinary research program, which connects to the vibrant re-search environment in the UK in said subjects.
这个博士项目将探索量子场论(QFTs)中高形式对称性的数学和物理含义,以及其扩展,包括高群结构和其他分类对称性。高形式对称具有高维带电物体,QFT中的缺陷算子,例如杨-米尔斯理论中的线算子。它们在拓扑算子下带电,形成所谓的高形式对称群。当给定理论的高形式对称不是简单地形成积群,而是形成“广义扩展”时,就会出现高群结构。这种对称性直到最近才在数学物理中被发现。与此相补充的是,它们的数学结构最近在代数拓扑/范畴论方面取得了许多令人兴奋的进展。本项目旨在协同这些发展,并探索这种对称性对四维和低维规范理论的物理含义:具体来说,理解高群在约束量子场动力学和真空结构中的作用,特别是N=1超对称规范理论。目标是获得对4d中所有高群和广义对称结构的全面理解。具体目标是:1。确定具有物质和颤振规范理论的四维规范理论的全局味对称群、一形式对称和这些高形式对称形成的二群结构或异常。2. 确定对这种量子场的真空结构的影响,特别是考虑到约束。3. 在QFT对偶上匹配这些广义对称性(例如Seiberg-like对偶)。4. 发展了在量子场的弦理论构造中实现这些广义对称性的方法。5. 推广到低维qft(在凝聚态物质中的应用)以及非超对称理论。该方法以数学物理为基础,在代数拓扑和范畴论中有很强的成分。范畴对称是最近才出现的,该项目打算将它们与量子傅立波中的现代工具结合起来,如对偶性、弦理论中的几何实现以及低维理论(如凝聚态物质)的应用。这与EPSRC在数学物理、代数拓扑以及物理方面的凝聚态物质方面的研究策略一致。这个项目作为一个跨学科的研究项目脱颖而出,它与英国在上述学科中充满活力的研究环境相联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Scattering in Quantum Gravity: Symmetries and Holography
量子引力中的散射:对称性和全息术
- 批准号:
2310633 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Generalized Symmetries in Quantum Field Theory and Quantum Gravity
量子场论和量子引力中的广义对称性
- 批准号:
EP/X028291/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
ExpandQISE: Track 1: Exceptional entanglement transition and supersensitive quantum sensing empowered by anti-Hermiticity and symmetries
ExpandQISE:轨道 1:反厄米性和对称性支持的出色纠缠跃迁和超灵敏量子传感
- 批准号:
2329027 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
RUI: Homological Techniques in Quantum Symmetries
RUI:量子对称性中的同调技术
- 批准号:
2201146 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Interagency Agreement
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
- 批准号:
2154389 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding quantum systems with higher symmetries
理解具有更高对称性的量子系统
- 批准号:
RGPIN-2017-05371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
C*-dynamics, quantum equilibrium, and symmetries
C*-动力学、量子平衡和对称性
- 批准号:
RGPIN-2017-04052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual